Abstract

The generation and transmission of a 150-Gb/s discrete-Fourier-transform spread (DFT-spread) probabilistic shaping (PS) 16QAM discrete multi-tone (DMT) signal with low-density parity-check (LDPC)-coded modulation for optical interconnection are proposed and experimentally demonstrated for the first time. The PS-16QAM symbols are reshaped from 32-QAM symbols based on the near-Gaussian distribution. The maximal shaping gain of around 0.5 dB is obtained for the PS-16QAM compared with the traditional unshaped one. Compared with the standard 16QAM, the proposed PS-16QAM DMT signal shows superior receiver sensitivity to provide abundant system loss budget for leveraging the legacy. Jointly iterative decoding algorithms based LDPC is utilized for PS de-mapping and inherent overlapped symbols identification in PS. In addition, the joint applications of DFT-spread and PS techniques can significantly improve received power sensitivity (RPS).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency

J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 21(2) 1555-1560 (2013)

FPGA-based LDPC-coded APSK for optical communication systems

Ding Zou, Changyu Lin, and Ivan B. Djordjevic
Opt. Express 25(4) 3133-3142 (2017)

16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance

H. Zhang, J.-X. Cai, H. G. Batshon, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 20(11) 11688-11693 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks—an operator’s view,” in Proc. ECOC2005, 53–56 (2005).
    [Crossref]
  2. J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100Gb/s PAM-4, CAP-16 and DFT-spread OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  3. N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
    [Crossref]
  4. M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct detection solutions for 100G and beyond,” in Proc. OFC2017, paper Tu3I.3 (2017).
    [Crossref]
  5. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  6. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  7. F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
    [Crossref] [PubMed]
  8. L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
    [Crossref]
  9. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
    [Crossref]
  10. R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Proc. IEEE Globecom Workshops 1, 724–728 (1996).
  11. F. Li, J. Yu, Z. Cao, M. Chen, J. Zhang, and X. Li, “Demostration of 520 Gb/s/λ pre-equalized DFT-spread PDM-16QAM-OFDM signal transmission,” Opt. Express 24(3), 2648–2654 (2016).
    [Crossref] [PubMed]
  12. J. Yu and J. Zhang, “Single-carrier 400G based on 84-gbaud PDM-8QAM transmission over 2,125 km SSMF enhanced by pre-equalization, LUT and DBP,” in Proc. OFC2017, Paper Tu2E.2 (2017).
  13. F. Li, X. Li, and J. Yu, “Performance comparison of DFT-spread and pre-equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
    [Crossref]
  14. T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34(21), 5063–5073 (2016).
    [Crossref]
  15. M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
    [Crossref]
  16. C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightwave Technol. 34(18), 4285–4292 (2016).
    [Crossref]
  17. F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2015).
    [Crossref]

2017 (2)

2016 (4)

2015 (3)

2014 (3)

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
[Crossref] [PubMed]

1996 (1)

R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Proc. IEEE Globecom Workshops 1, 724–728 (1996).

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Alvarado, A.

Bao, Y.

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Böcherer, G.

Buchali, F.

Cao, Z.

Chen, L.

Chen, M.

Chi, N.

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Christensen, L. P. B.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

Davey, R. P.

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks—an operator’s view,” in Proc. ECOC2005, 53–56 (2005).
[Crossref]

Dochhan, A.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct detection solutions for 100G and beyond,” in Proc. OFC2017, paper Tu3I.3 (2017).
[Crossref]

Eiselt, M.

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Eiselt, M. H.

Eiselt, N.

Elbers, J.-P.

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Fàbrega, J. M.

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Fehenberger, T.

Fischer, R. F. H.

R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Proc. IEEE Globecom Workshops 1, 724–728 (1996).

Forchhammer, S.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Griesser, H.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Hanik, N.

Hohenleitner, R.

Huber, J. B.

R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Proc. IEEE Globecom Workshops 1, 724–728 (1996).

Idler, W.

Kschischang, F. R.

Larsen, K. J.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Li, F.

Li, J.

Li, X.

Li, Z.

Liu, G. N.

Mao, Y.

Monroy, I. T.

Moreolo, M. S.

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Nadal, L.

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

Neumeyr, C.

Olmos, J. J. V.

Ortsiefer, M.

Pan, C.

Payne, D. B.

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks—an operator’s view,” in Proc. ECOC2005, 53–56 (2005).
[Crossref]

Schmalen, L.

Schulte, P.

Shi, J.

Steiner, F.

Wang, Y.

Wei, J.

Xu, X.

Yankov, M. P.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Yu, J.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhong, Q.

Zhou, E.

Zhou, Y.

Zibar, D.

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

Zuo, T.

IEEE Photonics Technol. Lett. (1)

M. P. Yankov, D. Zibar, K. J. Larsen, L. P. B. Christensen, and S. Forchhammer, “Constellation shaping for fiber-optic channels with QAM and high spectral efficiency,” IEEE Photonics Technol. Lett. 26(23), 2407–2410 (2014).
[Crossref]

IEEE Trans. Commun. (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2/3/4), 773–775 (1995).
[Crossref]

in Proc. IEEE Globecom Workshops (1)

R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multitone transmission,” in Proc. IEEE Globecom Workshops 1, 724–728 (1996).

J. Lightwave Technol. (8)

J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100Gb/s PAM-4, CAP-16 and DFT-spread OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
[Crossref]

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

C. Pan and F. R. Kschischang, “Probabilistic 16-QAM shaping in WDM systems,” J. Lightwave Technol. 34(18), 4285–4292 (2016).
[Crossref]

F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2015).
[Crossref]

L. Nadal, M. S. Moreolo, J. M. Fàbrega, A. Dochhan, H. Griesser, M. Eiselt, and J.-P. Elbers, “DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels,” J. Lightwave Technol. 32(21), 4143–4153 (2014).
[Crossref]

L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
[Crossref]

F. Li, X. Li, and J. Yu, “Performance comparison of DFT-spread and pre-equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
[Crossref]

T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,” J. Lightwave Technol. 34(21), 5063–5073 (2016).
[Crossref]

Opt. Express (3)

Other (3)

J. Yu and J. Zhang, “Single-carrier 400G based on 84-gbaud PDM-8QAM transmission over 2,125 km SSMF enhanced by pre-equalization, LUT and DBP,” in Proc. OFC2017, Paper Tu2E.2 (2017).

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks—an operator’s view,” in Proc. ECOC2005, 53–56 (2005).
[Crossref]

M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct detection solutions for 100G and beyond,” in Proc. OFC2017, paper Tu3I.3 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The principle of DFT-spread PS-16QAM DMT generation, (b) The principle of DFT-spread DMT employing LDPC-coded PS-16QAM, (c) The principle of DFT-spread scheme.
Fig. 2
Fig. 2 PS mapping for 16QAM constellation. (a) without optimization. (b) with optimization.
Fig. 3
Fig. 3 Capacity of code modulation system with different modulation formats.
Fig. 4
Fig. 4 Experimental setup for 150-Gb/s DFT-spread DMT transmission system over 2-km SSMF employing LDPC-coded PS-16QAM.
Fig. 5
Fig. 5 BER performance, (a) with Gray de-mapping, (b) with PS de-mapping and LDPC decoding (c) with different inner and outer iteration.
Fig. 6
Fig. 6 Constellation diagrams for 150-Gb/s DMT signal (a) without PS and DFT-spread, (b) with DFT-spread and no PS, (c) with PS and no DFT-spread and (d) with PS and DFT-spread.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Le( v j )=log( p( v j | Y, La( v j )) p( v j | Y ,La( v j )) )La( v j )
P( x )= k P(k)= k 1 K
C=I( X;Y )=m H x,y [ lo g 2 x ' χ p( y| x ' ) p( y|x ) ]   =m 1 K + 1 π N O exp( | yx | 2 N O )×lo g 2 exp( |yx | 2 |yx' | 2 N O )dy