Abstract

We propose a novel scheme of the real-time ranging for the six orientational targets based on the vertical cavity surface-emitting laser (VCSEL) network with three nodes. In the scheme, we explore a method to realize the globally complete chaotic synchronization (GCCS) of the network with different channel delays. Under the GCCS, we use the six chaotic polarization radars for the ranging of the six orientational targets based on Hilbert transform theory. It is found that the ranging of the six orientational targets has good performance, such as real-time stability and high accuracy, and the absolute errors of the ranging reach millimeter magnitude. Moreover, all relative errors are small and less than 11%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs

Dongzhou Zhong, Geliang Xu, Wei Luo, and Zhenzhen Xiao
Opt. Express 25(18) 21684-21704 (2017)

Optical network solution to the synchronization of distributed coherent aperture radar

Zhennan Zheng, Jinwang Qian, Mingzheng Lei, Chunqi Song, Mutong Xie, Xinlu Gao, and Shanguo Huang
Opt. Lett. 44(8) 2121-2124 (2019)

Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station

Jianyu Zheng, Hui Wang, Jianbin Fu, Li Wei, Shilong Pan, Lixian Wang, Jianguo Liu, and Ninghua Zhu
Opt. Express 22(5) 4896-4907 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
    [Crossref]
  2. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  3. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  4. F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
    [Crossref]
  5. L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
    [Crossref]
  6. W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express 18(25), 26155–26162 (2010).
    [Crossref] [PubMed]
  7. M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
    [Crossref]
  8. G. H. Li, “Chaos and synchronization of colpitts oscillators,” Microw. Opt. Technol. Lett. 39(6), 446–449 (2003).
    [Crossref]
  9. S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
    [Crossref]
  10. Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.
  11. V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12(7), 528–531 (2005).
    [Crossref]
  12. B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
    [Crossref]
  13. M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).
  14. B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
    [Crossref]
  15. H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
    [Crossref]
  16. T. F. Yao, D. Zhu, D. Ben, and S. L. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
    [Crossref] [PubMed]
  17. F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
    [Crossref]
  18. D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs,” Opt. Express 25(18), 21684–21704 (2017).
    [Crossref] [PubMed]
  19. H. Zhang, S. Y. Xiang, Y. H. Zhang, and X. X. Guo, “Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays,” Appl. Opt. 56(24), 6728–6734 (2017).
    [Crossref] [PubMed]
  20. S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
    [Crossref]
  21. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
    [Crossref] [PubMed]

2017 (3)

2016 (1)

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

2015 (3)

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

T. F. Yao, D. Zhu, D. Ben, and S. L. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
[Crossref] [PubMed]

2014 (1)

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

2010 (1)

2009 (1)

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
[Crossref]

2008 (1)

2007 (1)

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

2005 (1)

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12(7), 528–531 (2005).
[Crossref]

2004 (3)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

2003 (1)

G. H. Li, “Chaos and synchronization of colpitts oscillators,” Microw. Opt. Technol. Lett. 39(6), 446–449 (2003).
[Crossref]

2002 (1)

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

2001 (1)

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

1995 (1)

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Alonge, F.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
[Crossref]

Barr, T. A.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Ben, D.

Branciforte, M.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
[Crossref]

Bucolo, M.

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

Caponetto, R.

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

Chen, K. S.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Corron, N. J.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Cui, W. Z.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Fortuna, L.

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

Frasca, M.

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

Guo, X. X.

H. Zhang, S. Y. Xiang, Y. H. Zhang, and X. X. Guo, “Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays,” Appl. Opt. 56(24), 6728–6734 (2017).
[Crossref] [PubMed]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Guo, Y. Y.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

Han, H.

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

Hara, T.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Hara, Y.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Ji, Y. N.

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Jiang, T.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Kong, L. Q.

Leung, H.

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12(7), 528–531 (2005).
[Crossref]

Li, G. H.

G. H. Li, “Chaos and synchronization of colpitts oscillators,” Microw. Opt. Technol. Lett. 39(6), 446–449 (2003).
[Crossref]

Li, J. F.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Li, J. X.

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

Li, P.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

Liao, Y. H.

Lin, F. Y.

W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express 18(25), 26155–26162 (2010).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Lin, L.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

Liu, L.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

Luo, W.

Ma, W.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Machowski, W.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Moloney, J. V.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Motta, F.

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
[Crossref]

Myneni, K.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Pan, S. L.

Pan, W.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Pethel, S. D.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Qiao, S.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Ran, L. X.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Ratliff, P.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Reed, B. R.

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Rizzo, A.

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

San Miguel, M.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Seo, T.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Shi, Z. G.

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Venkatasubramanian, V.

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12(7), 528–531 (2005).
[Crossref]

Wang, A. B.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, B. J.

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wang, L. S.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

Wang, Y. C.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

B. J. Wang, Y. C. Wang, L. Q. Kong, and A. B. Wang, “Multi-target real-time ranging with chaotic laser radar,” Chin. Opt. Lett. 6(11), 868–870 (2008).
[Crossref]

Wen, A. J.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Wu, W. T.

Wu, Y.

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Xiang, S. Y.

H. Zhang, S. Y. Xiang, Y. H. Zhang, and X. X. Guo, “Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays,” Appl. Opt. 56(24), 6728–6734 (2017).
[Crossref] [PubMed]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Xiao, Z. Z.

Xu, G. L.

Xu, H.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Xu, W. P.

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Yanagisawa, H.

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Yang, P.

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

Yao, T. F.

Zhang, H.

H. Zhang, S. Y. Xiang, Y. H. Zhang, and X. X. Guo, “Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays,” Appl. Opt. 56(24), 6728–6734 (2017).
[Crossref] [PubMed]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Zhang, H. X.

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Zhang, M. J.

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Zhang, Y. H.

Zhang, Y. N.

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

Zhao, T.

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

Zhong, D. Z.

Zhu, D.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Myneni, T. A. Barr, B. R. Reed, S. D. Pethel, and N. J. Corron, “High precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78(11), 1496–1498 (2001).
[Crossref]

Chin. Opt. Lett. (1)

Entropy (1)

B. J. Wang, H. Xu, P. Yang, L. Liu, and J. X. Li, “Target detection and ranging through lossy media using chaotic radar,” Entropy 17(4), 2082–2093 (2015).
[Crossref]

IEEE Circuits Syst. Mag. (1)

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos work better than noise,” IEEE Circuits Syst. Mag. 2(3), 4–19 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Ambiguity functions of laser-based chaotic radar,” IEEE J. Quantum Electron. 40(12), 1732–1738 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photonics J. (1)

M. J. Zhang, Y. N. Ji, Y. N. Zhang, Y. Wu, H. Xu, and W. P. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photonics J. 6(5), 7902412 (2014).

IEEE Photonics Technol. Lett. (1)

L. S. Wang, Y. Y. Guo, P. Li, T. Zhao, Y. C. Wang, and A. B. Wang, “White-chaos radar with enhanced range resolution and anti-jamming capability,” IEEE Photonics Technol. Lett. 29(20), 1723–1726 (2017).
[Crossref]

IEEE Signal Process. Lett. (1)

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12(7), 528–531 (2005).
[Crossref]

IEEE Transactions on Instrumentation Meas. (1)

F. Alonge, M. Branciforte, and F. Motta, “A novel method of distance measurement based on pulse position modulation and synchronization of chaotic signals using ultrasonic radar systems,” IEEE Transactions on Instrumentation Meas. 58(2), 318–329 (2009).
[Crossref]

Int. J. Bifurc. Chaos (1)

H. Xu, B. J. Wang, H. Han, L. Liu, J. X. Li, Y. C. Wang, and A. B. Wang, “Remote imaging radar with ultra-wideband chaotic signals over fiber links,” Int. J. Bifurc. Chaos 25(11), 1530029 (2015).
[Crossref]

J. Light. Technol. (1)

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. X. Zhang, H. Zhang, X. X. Guo, and J. F. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Light. Technol. 34(18), 4221–4227 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

G. H. Li, “Chaos and synchronization of colpitts oscillators,” Microw. Opt. Technol. Lett. 39(6), 446–449 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52(2), 1728–1739 (1995).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

S. Qiao, Z. G. Shi, T. Jiang, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[Crossref]

Other (1)

Y. Hara, T. Hara, T. Seo, P. Ratliff, W. Machowski, and H. Yanagisawa, “Development of a chaotic signal radar system for vehicular collision-avoidance,” Proc. IEEE Conf. on Radar (IEEE, 2002), pp. 227–232.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Implementation of the real-time six-orientation target ranging by using the synchronized chaotic polarization radars in the three-node VCSEL network, showing (a) the system block diagram; (b) detailed light paths; (c) the real-time calculation; (d) the corresponding three-node ring topology. Here, VCSEL: vertical-cavity surface-emitting laser; OI: optical isolator; PBS: polarization beam splitter; EOM: electro-optic modulator; FC1 ∼ FC2: 1×3 fiber coupler; FC3 ∼ FC12: 1×2 fiber coupler; F: optical fiber; TX(Y)POA: transmitting x(y)-polarization optical antenna; RX(Y)POA: receiving x(y)-polarization optical antenna; T: target; NDF: neutral density filter; FR: filter; PD: photodetector; DIV: divider; HT: Hilbert transform; Phase: original phase calculation; DP: delayed phase calculation; SUB: subtracter; CD: distance calculation; m(t): modulated microwave signal; m1(t) ∼ m6(t): demodulated microwave signals.
Fig. 2
Fig. 2 Temporal traces of the two PCs from the 2-VCSEL output. (a) the X-PC2; (b) the Y-PC2. Here, I2x(t) = |E2x(t)|2; I2y(t) = |E2y(t)|2.
Fig. 3
Fig. 3 Maps of the correlation coefficients evolution in the parameter space of τ3 and τ4. Here, (a) ρ12x; (b) ρ12y; (c) ρ13x; (d) ρ13y; (e) ρ23x; (f) ρ23y.
Fig. 4
Fig. 4 Time traces of the phase ϕm and ϕmk. Here, (a) ϕm and ϕm1; (b) ϕm and ϕm2; (c) ϕm and ϕm3; (d) ϕm and ϕm4; (e) ϕm and ϕm5; (f) ϕm and ϕm6.
Fig. 5
Fig. 5 Measured distances of the targets T1, T11, T3, T33, T4 and T44.
Fig. 6
Fig. 6 Maps of the six relative errors evolutions in the parameter space of τ3 and τ4. Here, (a) RE1; (b) RE11; (c) RE3; (d) RE33; (e) RE4; (f) RE44. State 1: red area; State 2: green area; State 3: cyan area; State 4: blue area; State 5: yellow area.

Tables (1)

Tables Icon

Table 1 Numerical values for the calculation of the target ranging

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d E 1 x , 1 y ( t ) d t = { κ [ N 1 ( t ) 1 ] γ a } E 1 x , 1 y ( t ) κ n 1 ( t ) E 1 y , 1 x ( t ) { sin [ φ 1 y ( t ) φ 1 x ( t ) ] ± α cos [ φ 1 y ( t ) φ 1 x ( t ) ] } + K 12 E 2 x , 2 y ( t τ 1 , 11 ) [ 1 + m ( t τ 1 , 11 ) ] cos [ ω 0 τ 1 , 11 + φ 1 x , 1 y ( t ) φ 2 x , 2 y ( t τ 1 , 11 ) ] + β sp γ e N 1 ( t ) ζ x , y ,
d φ 1 x , 1 y ( t ) d t = κ α [ N 1 ( t ) 1 ] γ p ± κ n 1 ( t ) E 1 y , 1 x ( t ) E 1 x , 1 y ( t ) { cos [ φ 1 y ( t ) φ 1 x ( t ) ] α sin [ φ 1 y ( t ) φ 1 x ( t ) ] } K 12 E 2 x , 2 y ( t τ 1 , 11 ) [ 1 + m ( t τ 1 , 11 ) ] E 1 x , 1 y ( t ) sin [ ω 0 τ 1 , 11 + φ 1 x , 1 y ( t ) φ 2 x , 2 y ( t τ 1 , 11 ) ] ,
d E 2 x , 2 y ( t ) d t = { κ [ N 2 ( t ) 1 ] γ a } E 2 x , 2 y ( t ) κ n 2 ( t ) E 2 y , 2 x ( t ) { sin [ φ 2 y ( t ) φ 2 x ( t ) ] ± α cos [ φ 2 y ( t ) φ 2 x ( t ) ] } + K 22 E 2 x , 2 y ( t τ 2 , 22 ) [ 1 + m ( t τ 2 , 22 ) ] cos [ ω 0 τ 2 , 22 + φ 2 x , 2 y ( t ) φ 2 x , 2 y ( t τ 2 , 22 ) ] + β sp γ e N 2 ( t ) ζ x , y ,
d φ 2 x , 2 y ( t ) d t = κ α [ N 2 ( t ) 1 ] γ p ± κ n 2 ( t ) E 2 y , 2 x ( t ) E 2 x , 2 y ( t ) { cos [ φ 2 y ( t ) φ 2 x ( t ) ] α sin [ φ 2 y ( t ) φ 2 x ( t ) ] } K 22 E 2 x , 2 y ( t τ 2 , 22 ) [ 1 + m ( t τ 2 , 22 ) ] E 2 x , 2 y ( t ) sin [ ω 0 τ 2 , 22 + φ 2 x , 2 y ( t ) φ 2 x , 2 y ( t τ 2 , 22 ) ] ,
d E 3 x , 3 y ( t ) d t = { κ [ N 3 ( t ) 1 ] γ a } E 3 x , 3 y ( t ) κ n 3 ( t ) E 3 y , 3 x ( t ) { sin [ φ 3 y ( t ) φ 3 x ( t ) ] ± α cos [ φ 3 y ( t ) φ 3 x ( t ) ] } + K 31 E 1 x , 1 y ( t τ 3 , 33 ) [ 1 + m ( t τ 3 , 33 ) ] cos [ ω 0 τ 3 , 33 + φ 3 x , 3 y ( t ) φ 1 x , 1 y ( t τ 3 , 33 ) ] + K 32 E 2 x , 2 y ( t τ 4 , 444 ) [ 1 + m ( t τ 4 , 44 ) ] cos [ ω 0 τ 4 , 44 + φ 3 x , 3 y ( t ) φ 2 x , 2 y ( t τ 4 , 444 ) ] + β sp γ e N 3 ( t ) ζ x , y ,
d φ 3 x , 3 y ( t ) d t = κ α [ N 3 ( t ) 1 ] γ p ± κ n 3 ( t ) E 3 y , 3 x ( t ) E 3 x , 3 y ( t ) { cos [ φ 3 y ( t ) φ 3 x ( t ) ] α sin [ φ 3 y ( t ) φ 3 x ( t ) ] } K 31 E 1 x , 1 y ( t τ 3 , 33 ) [ 1 + m ( t τ 3 , 33 ) ] E 3 x , 3 y ( t ) sin [ ω 0 τ 3 , 33 + φ 3 x , 3 y ( t ) φ 1 x , 1 y ( t τ 3 , 33 ) ] K 32 E 2 x , 2 y ( t τ 4 , 44 ) [ 1 + m ( t τ 4 , 44 ) ] E 3 x , 3 y ( t ) sin [ ω 0 τ 4 , 44 + φ 3 x , 3 y ( t ) φ 2 x , 2 y ( t τ 4 , 444 ) ] ,
d N i ( t ) d t = γ e { μ N i ( t ) [ 1 + ( E i x ( t ) ) 2 + ( E i y ( t ) ) 2 ] + 2 n i ( t ) E i x ( t ) E i y ( t ) sin [ φ i y ( t ) φ i x ( t ) ] } ,
d n i ( t ) d t = γ s n i ( t ) γ e { n i ( t ) [ ( E i x ( t ) ) 2 + ( E i y ( t ) ) 2 ] 2 N i ( t ) E i x ( t ) E i y ( t ) sin [ φ i y ( t ) φ i x ( t ) ] } ,
E 1 x ( t ) = E 2 x ( t Δ τ 1 ) , E 3 x ( t ) = E 1 x ( t Δ τ 3 ) , E 3 x ( t ) = E 2 x ( t Δ τ 5 ) , E 1 y ( t ) = E 2 y ( t Δ τ 2 ) , E 3 y ( t ) = E 1 y ( t Δ τ 4 ) , E 3 y ( t ) = E 2 y ( t Δ τ 6 ) ,
Δ τ 1 = τ 1 τ 2 , Δ τ 2 = τ 11 τ 22 , Δ τ 3 = τ 4 τ 1 , Δ τ 4 = τ 44 τ 11 , Δ τ 5 = τ 4 τ 2 , Δ τ 6 = τ 44 τ 22 ,
K 12 = K 22 = K 31 + K 32 , τ 2 = τ 1 + τ 3 τ 4 , τ 22 = τ 11 + τ 33 τ 44 , Δ τ 1 = Δ τ 2 , Δ τ 3 = Δ τ 4 , Δ τ 5 = Δ τ 6 ,
m ( t ) = A cos ( ω t ) ,
m 1 ( t ) = E 2 x ( t Δ τ 1 ) m ( t Δ τ 1 ) E 1 x ( t ) , m 2 ( t ) = E 2 y ( t Δ τ 2 ) m ( t Δ τ 2 ) E 1 y ( t ) , m 3 ( t ) = E 1 x ( t Δ τ 3 ) m ( t Δ τ 3 ) E 3 x ( t ) , m 4 ( t ) = E 1 y ( t Δ τ 4 ) m ( t Δ τ 4 ) E 3 y ( t ) , m 5 ( t ) = E 2 x ( t Δ τ 5 ) m ( t Δ τ 5 ) E 3 x ( t ) , m 6 ( t ) = E 2 y ( t Δ τ 6 ) m ( t Δ τ 6 ) E 3 y ( t ) ,
m k ( t ) = A cos [ ω ( t Δ τ k ) ] , k = 1 , 2 , 3 , 4 , 5 , 6 ( the same below ) .
ψ ( t ) = m ( t ) + j m ˜ ( t ) ,
ϕ m ( t ) = arctan m ˜ ( t ) m ( t ) = ω t ,
ϕ m k ( t ) = arctan m ˜ k ( t ) m k ( t ) = ω ( t Δ τ k ) ,
Δ τ k = ϕ m ( t ) ϕ m k ( t ) ω = Δ ϕ k ω ,
d 1 = τ 1 c 2 = ( Δ τ 1 + τ 2 ) c 2 , d 3 = τ 3 c 2 = ( Δ τ 3 + τ 2 ) c 2 , d 4 = τ 4 c 2 = ( Δ τ 5 + τ 2 ) c 2 , d 11 = τ 11 c 2 = ( Δ τ 2 + τ 22 ) c 2 , d 33 = τ 33 c 2 = ( Δ τ 4 + τ 22 ) c 2 , d 44 = τ 44 c 2 = ( Δ τ 6 + τ 22 ) c 2 ,
ρ 12 x , y = [ I 2 x , 2 y ( t Δ τ 1 , 2 ) I 2 x , 2 y ( t Δ τ 1 , 2 ) ] [ I 1 x , 1 y ( t ) I 1 x , 1 y ( t ) ] { [ I 2 x , 2 y ( t Δ τ 1 , 2 ) I 2 x , 2 y ( t Δ τ 1 , 2 ) ] 2 [ I 1 x , 1 y ( t ) I 1 x , 1 y ( t ) ] 2 } 1 / 2 ,
ρ 13 x , y = [ I 1 x , 1 y ( t Δ τ 3 , 4 ) I 1 x , 1 y ( t Δ τ 3 , 4 ) ] [ I 3 x , 3 y ( t ) I 3 x , 3 y ( t ) ] { [ I 1 x , 1 y ( t Δ τ 3 , 4 ) I 1 x , 1 y ( t Δ τ 3 , 4 ) ] 2 [ I 3 x , 3 y ( t ) I 3 x , 3 y ( t ) ] 2 } 1 / 2 ,
ρ 23 x , y = [ I 2 x , 2 y ( t Δ τ 5 , 6 ) I 2 x , 2 y ( t Δ τ 5 , 6 ) ] [ I 3 x , 3 y ( t ) I 3 x , 3 y ( t ) ] { [ I 2 x , 2 y ( t Δ τ 5 , 6 ) I 2 x , 2 y ( t Δ τ 5 , 6 ) ] 2 [ I 3 x , 3 y ( t ) I 3 x , 3 y ( t ) ] 2 } 1 / 2 ,
RE J = | Δ d J | d T J × 100 % ,

Metrics