Abstract

Optical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs. Incorporation of magnetite nanoparticles into polyelectrolyte layers renders HC-MFs visible for MRI and induces the red-shift in their transmission spectra. Specifically, the transmission shifts up to 60 nm have been revealed for the several-layers composite coating, along with the high-quality contrast of HC-MFs in MRI scans. Our results shed light on marrying fiber-based endoscopy with MRI to open novel possibilities for minimally invasive clinical diagnostics and surgical procedures in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-element hollow-core anti-resonant fiber for infrared thermal imaging

Takuya Kobayashi, Takashi Katagiri, and Yuji Matsuura
Opt. Express 24(23) 26565-26574 (2016)

In situ monitoring of the formation of nanoscale polyelectrolyte coatings on optical fibers using Surface Plasmon Resonances

Yanina Shevchenko, Nur Uddin Ahamad, Anatoli Ianoul, and Jacques Albert
Opt. Express 18(19) 20409-20421 (2010)

Coherent hollow-core waveguide bundles for thermal imaging

Udi Gal, James Harrington, Moshe Ben-David, Carlos Bledt, Nicholas Syzonenko, and Israel Gannot
Appl. Opt. 49(25) 4700-4709 (2010)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
    [Crossref] [PubMed]
  2. T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
    [Crossref] [PubMed]
  3. S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
    [Crossref] [PubMed]
  4. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  5. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
    [Crossref] [PubMed]
  6. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
    [Crossref] [PubMed]
  7. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
    [Crossref] [PubMed]
  8. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  9. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
    [Crossref] [PubMed]
  10. R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21(6), 569–594 (1966).
    [Crossref]
  11. G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
    [Crossref]
  12. D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
    [Crossref] [PubMed]
  13. A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
    [Crossref] [PubMed]
  14. I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
    [Crossref]
  15. M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
    [Crossref]
  16. R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.
  17. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  18. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550 (2009).
    [Crossref]
  19. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [Crossref] [PubMed]
  20. D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
    [Crossref]
  21. J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
    [Crossref]
  22. A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
    [Crossref]
  23. P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
    [Crossref]
  24. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
    [Crossref]
  25. Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
    [Crossref]
  26. J. S. Skibina, A. V. Malinin, A. A. Zanishevskaya, and V. V. Tuchin, “Photonic Crystal Waveguide Sensing,” in Portable Biosensing of Food Toxicants and Environmental Pollutants, G.-P. N. D. P. Nikolelis, T. Varzakas, A. Erdem, ed. (CRC Press, 2013), 1–32.
  27. A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
    [Crossref]
  28. A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
    [Crossref] [PubMed]
  29. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  30. A. M. Zheltikov, “Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides,” Phys. Uspekhi 51(6), 591 (2008).
    [Crossref]
  31. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005), 61.
  32. A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
    [Crossref] [PubMed]
  33. S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
    [Crossref]

2018 (2)

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

2017 (3)

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

2015 (1)

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

2013 (1)

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

2012 (3)

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

2011 (2)

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

2010 (2)

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

A. M. Zheltikov, “Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides,” Phys. Uspekhi 51(6), 591 (2008).
[Crossref]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

2007 (1)

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

2006 (2)

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2002 (2)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

2001 (1)

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

2000 (1)

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

1992 (1)

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[Crossref]

1966 (1)

R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21(6), 569–594 (1966).
[Crossref]

Abeeluck, A. K.

Adams, D. C.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Akasaka, T.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

Arregui, F. J.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

Badylevich, M.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Balakrishnan, M.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

Baldwin, C.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Barretto, R. P. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Bartelt, H.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Becker, M.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

Bedard, M.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Beloglazov, V. I.

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Betge, I. L.

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Boppart, S. A.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Brezinski, M. E.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Brückner, S.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Burmistrova, N. A.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Burns, L. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Capasso, F.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Chainikov, M. V.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Chibrova, A. A.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Cižmár, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Claesen, S.

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

Cocker, E. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Collier, T.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Da, N.

Decher, G.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[Crossref]

Descour, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Dincer, I.

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Ding, V.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Dolmashkin, A. A.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Drexler, W.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Dubrovskii, V. A.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Eggleton, B. J.

Elerman, Y.

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Elosua, C.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

Fedorenko, Y. G.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Flusberg, B. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Follen, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Fujimoto, J. G.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Gazdar, A.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

German, S. V.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Gorin, D.

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Gorin, D. A.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Goryacheva, I. Y.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Granzow, N.

Grigoriev, D.

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Grigoriev, D. O.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Gross, P.

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

Halls, J. M.

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

Hariri, L. P.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Hassani, A.

Headley, C.

Hoh, D.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Hong, J. D.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[Crossref]

Huang, Y.-W.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Ikeda, N.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Iler, R. K.

R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21(6), 569–594 (1966).
[Crossref]

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Inozemtseva, O. A.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

Jiang, J.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Jung, J. C.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Kawamoto, T.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Khomutov, G. B.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Khorasaninejad, M.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Kitney, R. I.

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

Klein, M.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Ko, T. H.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Kobelke, J.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Krinsky, M. L.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Kume, T.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Lam, S.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Langhoff, N.

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

leRiche, J.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Li, X. D.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Liang, C.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Litchinitser, N. M.

Liu, T.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Lopez-Torres, D.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

MacAulay, C.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Malinin, A. V.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Maltseva, E.

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Markin, A. V.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Mashimo, H.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

McWilliams, A.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Metvalli, K.

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

Möhwald, H.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Mukamel, E. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Mutinga, M.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Neishi, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Nimmerjahn, A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Ogasawara, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Pahlevaninezhad, H.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

Peng, M.

Pidenko, P. S.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Pidenko, S. A.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Pitris, C.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Qiu, C.-W.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Richards-Kortum, R.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

Rothhardt, M.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

Ruan, S.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Russell, P. S. J.

Sadahira, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Schmidt, M. A.

Schmitt, J.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[Crossref]

Schnitzer, M. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Schuster, K.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Schwuchow, A.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Serdobintsev, A. A.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Shi, Z.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Shteinmaeer, G.

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

Shuvalov, A. A.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

Silokhin, I. Y.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Skibina, J. S.

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Skibina, Y. S.

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

Skorobogatiy, M.

Spittel, R.

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

Standish, B.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Steinmeyer, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Sukhorukov, G. B.

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Sukmawan, R.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Sung, K.-B.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Suter, M. J.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Toyota, E.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Tozkoparan, O.

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Tuchin, V. V.

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Turtaev, S.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

Van Dam, J.

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

Venig, S. B.

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Villatoro, J.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

Vitkin, A. I.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Wang, S.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Watanabe, N.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Wedell, R.

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Wei, H.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Wondraczek, L.

Yan, P.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Yang, V.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Yashchenok, A.

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Yashchenok, A. M.

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Yildirim, O.

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

Yin, J.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Yoshida, K.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Zanishevskaya, A. A.

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Zheltikov, A. M.

A. M. Zheltikov, “Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides,” Phys. Uspekhi 51(6), 591 (2008).
[Crossref]

Zhu, A.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Zubia, J.

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

Am. J. Cardiol. (1)

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol. 97(12), 1713–1717 (2006).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res. 14(7), 2006–2011 (2008).
[Crossref] [PubMed]

Colloid J. (1)

S. V. German, O. A. Inozemtseva, A. V. Markin, K. Metvalli, G. B. Khomutov, and D. A. Gorin, “Synthesis of magnetite hydrosols in inert atmosphere,” Colloid J. 75(4), 483–486 (2013).
[Crossref]

Endoscopy (1)

X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[Crossref] [PubMed]

Int. Congr. Ser. (1)

P. Gross, R. I. Kitney, S. Claesen, and J. M. Halls, “MR-compatible endoscopy and tracking for image-guided surgery,” Int. Congr. Ser. 1230, 1076–1082 (2001).
[Crossref]

J. Biomed. Opt. (1)

A. A. Zanishevskaya, A. A. Shuvalov, Y. S. Skibina, and V. V. Tuchin, “Blood typing using microstructured waveguide smart cuvette,” J. Biomed. Opt. 20(4), 040503 (2015).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21(6), 569–594 (1966).
[Crossref]

J. Lit. Technol. (1)

M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-Filled Silica Fibers as a Step Towards Electro-Optically Tunable Fiber Devices,” J. Lit. Technol. 30(12), 1931–1936 (2012).
[Crossref]

J. Magn. Magn. Mater. (1)

I. Dincer, O. Tozkoparan, S. V. German, A. V. Markin, O. Yildirim, G. B. Khomutov, D. A. Gorin, S. B. Venig, and Y. Elerman, “Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies,” J. Magn. Magn. Mater. 324(19), 2958–2963 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (1)

D. Grigoriev, D. Gorin, G. B. Sukhorukov, A. Yashchenok, E. Maltseva, and H. Möhwald, “Polyelectrolyte/magnetite Nanoparticle Multilayers: Preparation and Structure Characterization,” Langmuir 23(24), 12388–12396 (2007).
[Crossref] [PubMed]

Light Sci. Appl. (1)

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Nat. Methods (2)

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Photonics (2)

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (Amst) (1)

A. A. Chibrova, A. A. Shuvalov, Y. S. Skibina, P. S. Pidenko, S. A. Pidenko, N. A. Burmistrova, and I. Y. Goryacheva, “The red shift of the semiconductor quantum dots luminescence maximum in the hollow core photonic crystal fibers,” Opt. Mater. (Amst) 73, 423–427 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (2)

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Möhwald, “Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies,” Phys. Chem. Chem. Phys. 12(35), 10469–10475 (2010).
[Crossref] [PubMed]

Phys. Uspekhi (1)

A. M. Zheltikov, “Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides,” Phys. Uspekhi 51(6), 591 (2008).
[Crossref]

Quantum Electron. (2)

A. V. Malinin, J. S. Skibina, V. V. Tuchin, M. V. Chainikov, V. I. Beloglazov, I. Y. Silokhin, A. A. Zanishevskaya, V. A. Dubrovskii, and A. A. Dolmashkin, “The use of hollow-core photonic crystal fibres as biological sensors,” Quantum Electron. 41(4), 302–307 (2011).
[Crossref]

Y. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011).
[Crossref]

Sens. Actuators B Chem. (2)

D. Lopez-Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, and F. J. Arregui, “Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor,” Sens. Actuators B Chem. 242, 1065–1072 (2017).
[Crossref]

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B Chem. 238, 518–524 (2017).
[Crossref]

Thin Solid Films (1)

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[Crossref]

Other (3)

J. S. Skibina, A. V. Malinin, A. A. Zanishevskaya, and V. V. Tuchin, “Photonic Crystal Waveguide Sensing,” in Portable Biosensing of Food Toxicants and Environmental Pollutants, G.-P. N. D. P. Nikolelis, T. Varzakas, A. Erdem, ed. (CRC Press, 2013), 1–32.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” in Proc. SPIE. (2011), 7946, p. 79460Z.

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005), 61.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic showing preparation of the samples. (a) Hermetic coupling of the HC-MF to the pipette tip. The scanning electron microscopy (SEM) images denote the cross-section of the HC-MF. (b) The scheme of the PDDA/MNPs coatings formation. At first, the structure is washed twice by the deionized water. Then, polyelectrolytes and magnetite nanoparticles are adsorbed alternately onto the interior surface of the HC-MF by feeling the fiber with the polyelectrolyte solution for 10 min followed by washing with the deionized water after each adsorption step. The procedure is repeated to depose the desired number of bilayers.
Fig. 2
Fig. 2 Magnetic resonance investigation of HC-MFs coated by nanocomposite bilayers. (a) Schematic of a sample: HC-MF is placed in the microcentrifuge tube filled with water. (b) 3D reconstruction obtained by T2 weighted (turbo spin-echo) MR scanning. HC-MFs are marked by yellow. (c) T1 weighted (spin-echo) MR image in the longitudinal plane. (d) T1 weighted (fast field echo) MR image in the longitudinal plane. The numbers ‘1’, ‘3’, and ‘5’ denote the number of nanocomposite bilayers in the sample. The lengths of the samples: ‘1’ – 0.9 cm; ‘3′ – 1.65 cm and ‘5′ – 0.8 cm.
Fig. 3
Fig. 3 Schematics of the experimental setup for transmission characterization of HC-MF samples. The illumination of the broadband light source (halogen lamp) is launched into the HC-MF via an objective. The HC-MF is integrated in a smart cuvette (61-mm length). The input and output objectives and the cuvette are adjusted with three-axis motorized stages. The output spectrum is measured by the spectrometer Ocean Optics HR4000. The resulted data are analyzed by a personal computer.
Fig. 4
Fig. 4 Characterization of optical transmission for HC-MFs. (a) The transmission spectrum of an unfilled HC-MF obtained by measurements (blue) and theoretical calculations (red). (b) Modifications in the selected HC-MF transmission window induced by coating with different numbers of bilayers (a high molecular weight) in comparison with the unfilled sample. (c) The transmission maximum as a function of the number of nanocomposite bilayers. The purple line denotes a theoretical prediction. The thickness of every nanocomposite bilayer is assumed to be 25 nm. The theoretical calculations have been performed for the TE-polarized light.
Fig. 5
Fig. 5 Dependence of the refractive index for (a) the custom-made glass and (b) composite bilayers with MNPs on the light wavelength. In (a) points denote measurements, and the curve is an interpolation. The dispersion of the effective refractive index for the composite bilayers has been adopted from [13].
Fig. 6
Fig. 6 Image of magnetite nanoparticles obtained by transmission electron microscopy (TEM).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T= R m ,
m= λL 2 d 0 2 n 0 ,
R= | M 21 M 11 | 2 .
M=( M 11 M 12 M 21 M 22 )= D 0 1 [ l=1 N D l P l D l 1 ] D s ,
D l ={ ( 1 1 n l cos ϑ l n l cos ϑ l ) for TE polarization, ( cos ϑ l cos ϑ l n l n l ) for TM polarization,
P l =( exp(i2π n l d l cos ϑ l /λ) 0 0 exp(i2π n l d l cos ϑ l /λ) ),