Abstract

A new method using a rotating off-centered lens is proposed to reduce the heat accumulation at the focal spot of a stimulated Brillouin scattering phase conjugation mirror at high-repetition-rate operation. Theoretical simulation of the beam intensity pattern at the focal point indicates there is less coma-aberration using a rotating off-centered focusing lens than with a rotating wedge and a conventional lens. The resultant SBS output parameters using this new method are substantially improved comparable to those of a non-rotating conventional method for high-repetition-rate operation, while the former operates quite well for higher power and the latter operates only for lower input power. High reflected energy and a good beam pattern are demonstrated using the proposed method in the present experimental conditions of 50 mJ at 1 kHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-nanosecond stimulated Brillouin scattering pulse compression using HT270 for kHz repetition rate operation

Hongli Wang, Seongwoo Cha, Hong Jin Kong, Yulei Wang, and Zhiwei Lu
Opt. Express 27(21) 29789-29802 (2019)

Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate

Zhigang Zhao, Yantao Dong, Sunqiang Pan, Chong Liu, Jun Chen, Lixin Tong, Qingsong Gao, and Chun Tang
Opt. Express 20(2) 1896-1902 (2012)

High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM

Zhijun Kang, Zhongwei Fan, Yutao Huang, Hongbo Zhang, Wenqi Ge, Mingshan Li, Xiaochao Yan, and Guoxin Zhang
Opt. Express 26(6) 6560-6571 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).
  2. J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
    [Crossref]
  3. M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).
  4. N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
    [Crossref] [PubMed]
  5. M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
    [Crossref]
  6. S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
    [Crossref] [PubMed]
  7. J. S. Qiu, X. X. Tang, Z. W. Fan, H. C. Wang, and H. Liu, “Two-beam combined 3.36 J, 100 Hz diode-pumped high beam quality Nd:YAG laser system,” Appl. Opt. 55(21), 5630–5633 (2016).
    [Crossref] [PubMed]
  8. X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
    [Crossref]
  9. Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
    [Crossref] [PubMed]
  10. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
    [Crossref] [PubMed]
  11. K. Tsubakimoto, H. Yoshida, and N. Miyanaga, “High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror,” Opt. Express 24(12), 12557–12564 (2016).
    [Crossref] [PubMed]
  12. C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
    [Crossref] [PubMed]
  13. H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
    [Crossref] [PubMed]
  14. Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
    [Crossref] [PubMed]
  15. Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
    [Crossref]
  16. V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd_YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37(30), 7085–7090 (1998).
    [Crossref] [PubMed]
  17. A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 10082, 100820Q (2017).
    [Crossref]
  18. E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
    [Crossref]
  19. A. A. Shilov, G. A. Pasmanik, O. V. Kulagin, and K. Deki, “High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation-pulse-compression mirror,” Opt. Lett. 26(20), 1565–1567 (2001).
    [Crossref] [PubMed]
  20. X. Xu, C. Feng, and J. C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22(11), 13904–13915 (2014).
    [Crossref] [PubMed]
  21. M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
    [Crossref]
  22. H. Yoshida, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29, 6 (2000).
  23. J. Lee and D. H. Reitze, “Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses,” Opt. Express 23(3), 2591–2599 (2015).
    [Crossref] [PubMed]
  24. H. J. Kong, S. Park, H. Ahn, H. Lee, J. Oh, and J. S. Kim, “Current status of Kumgang laser system,” Proc. SPIE 9342, 93421N (2015).
  25. H. J. Kong, S. Park, S. Cha, H. Ahn, H. Lee, J. Oh, B. J. Lee, S. Choi, and J. S. Kim, “Current status of the development of the Kumgang laser,” Opt. Mater. Express 4(12), 2551 (2014).
    [Crossref]

2018 (4)

2017 (6)

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 10082, 100820Q (2017).
[Crossref]

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (2)

J. Lee and D. H. Reitze, “Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses,” Opt. Express 23(3), 2591–2599 (2015).
[Crossref] [PubMed]

H. J. Kong, S. Park, H. Ahn, H. Lee, J. Oh, and J. S. Kim, “Current status of Kumgang laser system,” Proc. SPIE 9342, 93421N (2015).

2014 (2)

2010 (1)

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

2003 (1)

2001 (1)

2000 (1)

H. Yoshida, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29, 6 (2000).

1998 (1)

1995 (1)

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

1992 (1)

E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Ahn, H.

Andre, M.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Andreev, A. A.

Andreev, E. K. N. F.

E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Andreev, N.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Bai, Z.

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Bao, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Bean, J.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

Brogi, M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

Cao, H.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Cha, S.

Chan, H. H.

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Chan, N. P.

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Chen, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Chen, Y.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Choi, S.

Chu, H.

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 10082, 100820Q (2017).
[Crossref]

Churn, K. S.

Courde, C.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Cui, C.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Dai, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Daido, H.

Degnan, J.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Deki, K.

Désert, J. M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

Diels, J. C.

Dunn, P.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Fan, Z.

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref] [PubMed]

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Fan, Z. W.

Fei, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Feng, C.

Fiedorowicz, H.

Fujita, H.

Ge, W.

Gong, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Han, S.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

He, T.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

He, W.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Ho, S. G.

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Huang, G.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Huang, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Huang, Y.

Hyyppä, H.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Hyyppä, J.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Jaakkola, A.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Jin, D.

Jin, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Kaartinen, H.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Kageyama, N.

Kan, H.

Kang, Z.

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref] [PubMed]

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Khazanov, E. A.

E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Kim, J. S.

H. J. Kong, S. Park, H. Ahn, H. Lee, J. Oh, and J. S. Kim, “Current status of Kumgang laser system,” Proc. SPIE 9342, 93421N (2015).

H. J. Kong, S. Park, S. Cha, H. Ahn, H. Lee, J. Oh, B. J. Lee, S. Choi, and J. S. Kim, “Current status of the development of the Kumgang laser,” Opt. Mater. Express 4(12), 2551 (2014).
[Crossref]

Kirchner, G.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Kiriyama, H.

Kmetik, V.

Kong, H. J.

Kukko, A.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Kulagin, O. P.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Kulagin, O. V.

Kunimori, H.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Lee, B. J.

Lee, H.

Lee, J.

Li, M.

Li, S.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Li, X.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Lin, D.

Line, M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

Liu, H.

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

J. S. Qiu, X. X. Tang, Z. W. Fan, H. C. Wang, and H. Liu, “Two-beam combined 3.36 J, 100 Hz diode-pumped high beam quality Nd:YAG laser system,” Appl. Opt. 55(21), 5630–5633 (2016).
[Crossref] [PubMed]

Liu, R.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Liu, Y.

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Liu, Z.

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Lu, Z.

Lv, Y.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Miyajima, H.

Miyanaga, N.

Moore, C.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Nagai, T.

Nakatsuka, M.

Oh, J.

Palashov, O. V.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Park, S.

Pasmanik, G. A.

A. A. Shilov, G. A. Pasmanik, O. V. Kulagin, and K. Deki, “High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation-pulse-compression mirror,” Opt. Lett. 26(20), 1565–1567 (2001).
[Crossref] [PubMed]

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Powell, H. T.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Procházka, I.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Qiu, J.

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Qiu, J. S.

Reitze, D. H.

Rodchenkov, V.

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Sadovnikov, M.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Schreiber, U.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Schwarz, H.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

Shargorodskiy, V.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Shek, S. Y.

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Shi, Z.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Shilov, A. A.

Su, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Tang, X.

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Tang, X. X.

Tarasov, A. A.

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 10082, 100820Q (2017).
[Crossref]

Tsubakimoto, K.

Turppa, T.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Virtanen, J. P.

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

Wang, H.

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Wang, H. C.

Wang, Y.

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Wilkinson, M.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Witte, K. J.

Xu, X.

Yamakawa, K.

Yamanaka, T.

Yan, X.

Yang, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Yeung, C. K.

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Yoshida, H.

Yuan, H.

Zhang, G.

Zhang, H.

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref] [PubMed]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Zhang, X.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Zhao, C.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Zheng, Z.

Zhongping, Z.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Zhu, X.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Appl. Opt. (2)

Astrophys. J. (1)

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets,” Astrophys. J. 839(1), L2 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

E. K. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin Cells to High Repetition Rate Solid-state Lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Int. J. Geo-Inf. (1)

J. P. Virtanen, A. Kukko, H. Kaartinen, A. Jaakkola, T. Turppa, H. Hyyppä, and J. Hyyppä, “Nationwide Point Cloud—The Future Topographic Core Data,” Int. J. Geo-Inf. 6(8), 243 (2017).
[Crossref]

J Mod. Opt. (1)

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

J. Geodesy (1)

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 9, 1–21 (2018).

Lasers Surg. Med. (1)

N. P. Chan, S. G. Ho, S. Y. Shek, C. K. Yeung, and H. H. Chan, “A case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma,” Lasers Surg. Med. 42(8), 712–719 (2010).
[Crossref] [PubMed]

Opt. Express (7)

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref] [PubMed]

K. Tsubakimoto, H. Yoshida, and N. Miyanaga, “High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror,” Opt. Express 24(12), 12557–12564 (2016).
[Crossref] [PubMed]

C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
[Crossref] [PubMed]

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

X. Xu, C. Feng, and J. C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22(11), 13904–13915 (2014).
[Crossref] [PubMed]

J. Lee and D. H. Reitze, “Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses,” Opt. Express 23(3), 2591–2599 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

X. Tang, J. Qiu, Z. Fan, H. Wang, H. Liu, Y. Liu, and Z. Kang, “Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy,” Opt. Mater. 67, 64–69 (2017).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (4)

H. J. Kong, S. Park, H. Ahn, H. Lee, J. Oh, and J. S. Kim, “Current status of Kumgang laser system,” Proc. SPIE 9342, 93421N (2015).

M. Andre, N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, V. Rodchenkov, and H. T. Powell, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 10082, 100820Q (2017).
[Crossref]

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 106050T (2017).

Rev. Laser Eng. (1)

H. Yoshida, “Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse,” Rev. Laser Eng. 29, 6 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The temporal temperature behavior at the focal spot within SBS medium with a repetition rate of (a) 1 Hz; (b) 10 Hz; (c) 100 Hz; and (d) 1,000 Hz, respectively.
Fig. 2
Fig. 2 The maximum temperature at the focal point with (a) different repetition rate at input energy of 50 mJ; (b) different input energy at 1,000 Hz repetition rate.
Fig. 3
Fig. 3 Optical layouts of SBS pulse compressor with (a) normal focusing lens, (b) rotating wedge and normal focusing lens, and (c) rotating off-centered lens, (d) structure of the off-centered lens. QWP, quarter wave plate; HWP, half wave plate; L1~3, focusing lenses.
Fig. 4
Fig. 4 Optical system (a-c) and corresponding simulation results of the focal spot beam pattern (a1-c1) with 5 mm pump beam size when the focus is displaced by 7 mm from the lens center: (a, a1) normal focusing lens of 150 mm; (b, b1) wedge and normal focusing lens of 150 mm; and (c, c1) off-centered lens of 150 mm focal lengths.
Fig. 5
Fig. 5 SBS (a) reflected energy, (b) the RSD of the reflected energy, (c) compressed pulse width, and (d) the RSD of the pulse width using a normal focusing lens, a rotating wedge and a normal focusing lens, and a rotating off-centered lens.
Fig. 6
Fig. 6 Experimental setup for SBS pulse compression using an off-centered lens at 1 kHz repetition rate.
Fig. 7
Fig. 7 Reflected energy with normal lens and rotating off-centered lens under input energy of (a) 30 mJ and (b) 50 mJ at 1 kHz.
Fig. 8
Fig. 8 Improvement factor (the ratio of the reflected energies with method (3) and method (1)) with respect to input energy at 1 kHz.
Fig. 9
Fig. 9 Energy efficiency with respect to rotating speed under different input powers.
Fig. 10
Fig. 10 Spatial profiles of (a) pump beam, reflected beam (b, c) without and (d, e, f) with rotating off-centered lens at different pump powers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 u(r,z,t)+ 1 K c Q(r,z,t)= ρ C p K c u(r,z,t) t

Metrics