Abstract

In this paper, we propose a design utilizing two identically parallel-aligned nematic liquid crystal (LC) plates for fast-response and polarization-independent phase modulator. Driven by synchronized voltage signals, such a polarizer-free variable phase modulator shows a wide tunable range from zero to more than 3π, back and forth at 532nm. Due to the optical compensation of the two plates, the rise and fall time of the phase retardation corresponds to the switching-on time of the two plates. Several advantages are illustrated based on the optical compensation of two identical parallel-aligned plates. First, zero phase retardation is obtained, which overcomes the residual phase due to surfaced anchored liquid crystal molecules. The second advantage is sub-millisecond response of rise and fall of retardation since simultaneous relaxation of the two plates remains optically hidden during the synchronized voltages fall. This fast-response and polarization-independent phase modulator has great potential for practical use, including optical communications and light field imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure

Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Yue Zhao, Jiyu Fang, Zhibing Ge, and Shin-Tson Wu
Opt. Express 13(22) 8746-8752 (2005)

Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix

Ji Hoon Yu, Hung-Shan Chen, Po-Ju Chen, Ki Hoon Song, Seong Cheol Noh, Jae Myeong Lee, Hongwen Ren, Yi-Hsin Lin, and Seung Hee Lee
Opt. Express 23(13) 17337-17344 (2015)

Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system

Jing Yan, Yufei Xing, Zhengbo Guo, and Qing Li
Opt. Express 23(12) 15256-15264 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure Appl. Op. 2(3), 216–222 (2000).
    [Crossref]
  2. H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
    [Crossref]
  3. C. Y. Liu and L. W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Opt. Express 12(12), 2616–2624 (2004).
    [Crossref] [PubMed]
  4. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  5. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43(1), 11–19 (2004).
    [Crossref] [PubMed]
  6. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  7. R. Rajasekharan-Unnithan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid-crystal nanophotonic device,” Opt. Lett. 34(8), 1237–1239 (2009).
    [Crossref] [PubMed]
  8. J. Nicolás, J. Campos, and M. J. Yzuel, “Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices,” J. Opt. Soc. Am. A 19(5), 1013–1020 (2002).
    [Crossref] [PubMed]
  9. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
    [Crossref]
  10. W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
    [Crossref]
  11. J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
    [Crossref]
  12. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [Crossref]
  13. J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
    [Crossref]
  14. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
    [Crossref] [PubMed]
  15. H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
    [Crossref]
  16. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [Crossref]
  17. Y. H. Chen, C. T. Wang, C. P. Yu, and T. H. Lin, “Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time,” Opt. Express 19(25), 25441–25446 (2011).
    [Crossref] [PubMed]
  18. Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [Crossref]
  19. W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
    [Crossref]

2012 (1)

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

2011 (2)

2009 (1)

2008 (1)

2006 (1)

Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

2005 (5)

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

2004 (3)

2003 (1)

J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
[Crossref]

2002 (1)

2000 (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure Appl. Op. 2(3), 216–222 (2000).
[Crossref]

1970 (1)

W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
[Crossref]

Adams, J.

W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
[Crossref]

Apter, B.

Bahat-Treidel, E.

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure Appl. Op. 2(3), 216–222 (2000).
[Crossref]

Butt, H.

Campos, J.

Chen, L. W.

Chen, Y. H.

Chigrinov, V.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Efron, U.

Fan, Y. H.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Fang, J.

Flannery, J. B.

W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
[Crossref]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Ge, Z.

Glushchenko, A.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
[Crossref]

Haas, W.

W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
[Crossref]

Hahn, J.

Hegde, G.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Hu, W.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Huang, Y. H.

Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

Kim, H.

Kolev, D.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Komitov, L.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Kumar Srivastava, A.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lee, B.

Liang, X.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lim, Y.

Lin, T. H.

Lin, X. W.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lin, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Liu, C. Y.

Lu, Y. Q.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Nicolás, J.

Park, G.

Rajasekharan-Unnithan, R.

Ren, H.

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Ren, H. W.

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

Reznikov, Y.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

Sun, J. T.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Wang, C. T.

Wen, C. H.

Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

West, J. L.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
[Crossref]

Wilkinson, T. D.

Wu, S. T.

Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Wu, Y. H.

Wu, Z. J.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Yu, C. P.

Yzuel, M. J.

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
[Crossref]

Zhang, G. Q.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

Zhao, Y.

Zhu, G.

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[Crossref]

H. W. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, “Polarization-independent phase modulation of a homeotropic liquid crystal gel,” Appl. Phys. Lett. 87(19), 191106 (2005).
[Crossref]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005).
[Crossref]

Y. H. Huang, C. H. Wen, and S. T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[Crossref]

W. Hu, A. Kumar Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

J. Opt. A-Pure Appl. Op. (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure Appl. Op. 2(3), 216–222 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Opt. Commun. (1)

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

W. Haas, J. Adams, and J. B. Flannery, “New electro-optic effect in a room-temperature nematic liquid crystal,” Phys. Rev. Lett. 25(19), 1326–1327 (1970).
[Crossref]

SID Symposium Digest of Technical Papers (1)

J. L. West, G. Zhang, and A. Glushchenko, “55.1: Stressed Liquid Crystals for Electrically Controlled Fast Shift of Phase Retardation,” SID Symposium Digest of Technical Papers 34(1), 1469 (2003).
[Crossref]

Other (1)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the double cell nematic LC phase modulator.
Fig. 2
Fig. 2 Polarization states of incident and exit light on Poincare sphere when incidence changes (a) linear-polarization direction and (b) between linear and circular polarization.
Fig. 3
Fig. 3 Experimental setup for measuring transmittance and response waveforms.
Fig. 4
Fig. 4 (a) Transmittance versus voltage curves at 532 nm and (b) phase retardation of double cell nematic LC phase modulator at 532nm.
Fig. 5
Fig. 5 Waveforms of 4k Hz driving signals and electro-optical responses at 532 nm.
Fig. 6
Fig. 6 TVC of double cell modulator under different polarized incident light, (a) at V1 = 0 V, (b) at V2 = 10 V by a He-Ne laser at room temperature. The cell gaps of the Cell 1 and Cell 2 are 6.8 µm.

Tables (1)

Tables Icon

Table 1 Response time of double cell modulator and LC cells

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff (θ)= n 0 n e ( n 0 2 cos 2 θ+ n e 2 sin 2 θ) 1/2
J in =Acosφ( 1 0 )+A e i δ 0 sinφ( 0 1 )
J out = M 2 M 1 J in =( 1 0 0 e i δ 2 )( e i δ 1 0 0 1 ) J in
J out ==Acosφ( e i δ 1 0 )+A e i δ 0 sinφ( 0 e i δ 2 )
δ out = δ 1 (E,t) δ 2 (E,t)=2πd[Δ n 1 (E,t)-Δ n 2 (E,t)]/λ

Metrics