Abstract

We first optimize the design and compare the performance of thermo-optic phase-shifters based on TiN metal and N++ doped silicon, in the same SOI process. The designs don’t require special material processing, show negligible loss, and have very stable power consumption. The optimum TiN design has a switching powerPπ=21.4 mW and a time constantτ=5.6 µs, whereasPπ=22.8 mW andτ=2.2 µs for the best N++ Si design, enabling 2.5x faster switching compared to the metal heater. Doped-Si-based heaters are therefore the most practical and efficient on standard SOI. In addition, to optimize the layout density of highly integrated dies, we experimentally characterize internal and external thermal crosstalk for tunable Mach-Zehnder interferometers (MZIs) based on both heater designs for various power, distances, and etching patterns. Deep trenches are the best structures not involving special fabrication techniques to mitigate heat leakage affecting phase-sensitive devices close to heaters. Given the numerous applications of thermal tuners, this work is relevant to almost all silicon photonics designers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast and low power Michelson interferometer thermo-optical switch on SOI

Junfeng Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 16(20) 15304-15311 (2008)

Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch

Ke Liu, Chenglong Zhang, Sixuan Mu, Shuang Wang, and Volker J. Sorger
Opt. Express 24(14) 15845-15853 (2016)

Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo–optic 2 × 2 Mach–Zehnder switch

G.W. Cong, T. Matsukawa, T. Chiba, H. Tadokoro, M. Yanagihara, M. Ohno, H. Kawashima, H. Kuwatsuka, Y. Igarashi, M. Masahara, and H. Ishikawa
Opt. Express 21(6) 6889-6894 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Rasras and O. Al Mrayat, “Lab-on-Chip Silicon Photonic Sensor,” in The IoT Physical Layer, I. Elfadel, M. Ismail, eds. (Springer, Cham, 2019).
  2. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [Crossref]
  3. C. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, and B. Guan, “O, E, S, C, and L band silicon photonics coherent modulator/receiver,” in Optical Fiber Communications Conference and Exhibition, (Optical Society of America, 2016), paper Th5C.4.
  4. A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
    [Crossref] [PubMed]
  5. H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
    [Crossref]
  6. W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
    [Crossref]
  7. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  8. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  9. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  10. P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
    [Crossref]
  11. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  12. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, (OSA, 2009), paper CPDB10.
    [Crossref]
  13. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref] [PubMed]
  14. K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
    [Crossref]
  15. P. Pintus, C. Manganelli, F. Gambini, F. Di Pasquale, M. Fournier, O. Lemonnier, C. Kopp, and C. J. Oton, “Optimization of integrated silicon doped heaters for optical microring resonators,” in ECOC2016; 42nd European Conference on Optical Communication, (VDE, 2016), pp. 1–3.
  16. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
    [Crossref]
  17. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
    [Crossref]
  18. N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
    [Crossref]
  19. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
    [Crossref] [PubMed]
  20. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22(9), 10487–10493 (2014).
    [Crossref] [PubMed]
  21. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
    [Crossref] [PubMed]
  22. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
    [Crossref] [PubMed]
  23. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  24. D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
    [Crossref]
  25. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
    [Crossref]
  26. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  27. A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
    [Crossref]
  28. G. Eranna, Crystal Growth and Evaluation of Silicon for VLSI and ULSI (CRC, 2014).
  29. M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
    [Crossref]
  30. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
    [Crossref]
  31. X. Zhang and C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free‐standing silicon nitride thin films,” Rev. Sci. Instrum. 66(2), 1115–1120 (1995).
    [Crossref]
  32. M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
    [Crossref]
  33. B. Van Zeghbroeck, “Semiconductor Fundamentals,” in Principles of electronic devices (University of Colorado, 2011).
  34. J. F. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, CRC materials science and engineering handbook (CRC, 2016).
  35. P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
    [Crossref]
  36. M. W. Chase, Jr., “NIST-JANAF thermochemical tables, Monograph 9,” in J. Phys. Chem. Ref. Data, D. R. Burgess Jr, A. H. Harvey, eds. (American Chemical Society, 1998).
  37. H. O. Pierson, Handbook of refractory carbides and nitrides (Elsevier, 1996).
  38. W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
    [Crossref]
  39. E. Hecht, “The propagation of light,” in Optics, 4th Edition, Addison-Wesley, ed. (Pearson Education, 2002).
  40. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
    [Crossref]
  41. K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch,” Opt. Express 24(14), 15845–15853 (2016).
    [Crossref] [PubMed]
  42. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706–15718 (2013).
    [Crossref] [PubMed]
  43. D. Hohlfeld and H. Zappe, “Thermal and optical characterization of silicon-based tunable optical thin-film filters,” J. Microelectromech. Syst. 16(3), 500–510 (2007).
    [Crossref]
  44. T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” in Integrated Optics: Devices, Materials, and Technologies VII, S. S. Yakov, A. Tervonen, eds. (International Society for Optics and Photonics, 2003), 149–160.
  45. H. Matsuura, S. Suda, K. Tanizawa, K. Suzuki, K. Ikeda, H. Kawashima, and S. Namiki, “Accelerating switching speed of thermo-optic MZI silicon-photonic switches with “Turbo Pulse” in PWM Control,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), paper W4E. 3.
    [Crossref]
  46. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
    [Crossref]
  47. M. J. Brinkman, W. K. Bischel, T. Kowalczyk, D. R. Main, and L. L. Huang, “Thermo-optic switch having fast rise-time,” US 6,351,578 B1 (2002).
  48. K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and engineers (Princeton University, 2010).
  49. R. H. Cannon, “Damped second-order systems,” in Dynamics of physical systems, McGraw-Hill, ed. (Courier Corporation, 1967).

2018 (2)

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

2017 (1)

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

2016 (5)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
[Crossref]

K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch,” Opt. Express 24(14), 15845–15853 (2016).
[Crossref] [PubMed]

2015 (2)

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (3)

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (3)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

2010 (2)

2008 (1)

2007 (1)

D. Hohlfeld and H. Zappe, “Thermal and optical characterization of silicon-based tunable optical thin-film filters,” J. Microelectromech. Syst. 16(3), 500–510 (2007).
[Crossref]

2006 (1)

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

2004 (1)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

2002 (1)

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

1999 (1)

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

1998 (1)

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

1995 (1)

X. Zhang and C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free‐standing silicon nitride thin films,” Rev. Sci. Instrum. 66(2), 1115–1120 (1995).
[Crossref]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

Absil, P.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

Adibi, A.

Asghari, M.

Asheghi, M.

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

Assefa, S.

Atabaki, A. H.

Baehr-Jones, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogaerts, W.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Chagnon, M.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

Charitidis, C.

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

Chrostowski, L.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Chu, T.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Cunningham, J. E.

Dai, D.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

de Lima, T. F.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

DeRose, C.

DeRose, C. T.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Dimitriadis, C.

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eftekhar, A. A.

Ekawa, M.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

El-Fiky, E.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Englund, D.

Etessam-Yazdani, K.

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
[Crossref] [PubMed]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Feng, D.

Galland, C.

Ghosh, S.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Goodson, K.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

Goossens, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Green, W. M.

Grigoropoulos, C. P.

X. Zhang and C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free‐standing silicon nitride thin films,” Rev. Sci. Instrum. 66(2), 1115–1120 (1995).
[Crossref]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

Harris, N. C.

Hartmann, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

He, S.

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hochberg, M.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hohlfeld, D.

D. Hohlfeld and H. Zappe, “Thermal and optical characterization of silicon-based tunable optical thin-film filters,” J. Microelectromech. Syst. 16(3), 500–510 (2007).
[Crossref]

Hu, Y.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Hussin, R.

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Jarecki, R.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Kaneko, T.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

Kasnavi, R.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Kono, N.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Krishnamoorthy, A. V.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kurabayashi, K.

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

Kwong, D. L.

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lentine, A. L.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Lepage, G.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Leung, Y.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

Li, G.

Li, X.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Li, Z.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Liang, H.

Liow, T. Y.

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Liu, K.

Liu, W.

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
[Crossref] [PubMed]

Logothetidis, S.

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

Ma, Y.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Martinez, N. J.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Masood, A.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Mower, J.

Mu, S.

Nahmias, M. A.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Nielson, G. N.

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Osman, M.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

Pantouvaki, M.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Patel, D.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Patsalas, P.

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

Plant, D. V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Pomerene, A. T.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Prucnal, P. R.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Qian, W.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Samani, A.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Shafiiha, R.

Shastri, B. J.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Shi, W.

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Shi, Y.

Shoji, H.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Song, J.

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Sorger, V. J.

Starbuck, A. L.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Sun, J.

Tait, A. N.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Takechi, M.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Tao, S. H.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Touzelbaev, M.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

Trotter, D. C.

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
[Crossref] [PubMed]

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

Uesaka, K.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Valassiades, O.

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Veerasubramanian, V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Verheyen, P.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vlasov, Y. A.

Wang, S.

Watts, M. R.

Wong, S.

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

Wu, A. X.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Xiao, X.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Xiong, K.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Yagi, H.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Yegnanarayanan, S.

Yin, Y.

Yoneda, Y.

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

Young, R. W.

Yu, J.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Yu, L.

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008).
[Crossref] [PubMed]

Yu, Y.

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Zappe, H.

D. Hohlfeld and H. Zappe, “Thermal and optical characterization of silicon-based tunable optical thin-film filters,” J. Microelectromech. Syst. 16(3), 500–510 (2007).
[Crossref]

Zhang, C.

Zhang, X.

X. Zhang and C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free‐standing silicon nitride thin films,” Rev. Sci. Instrum. 66(2), 1115–1120 (1995).
[Crossref]

Zhong, Q.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

Zhou, E.

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Yagi, T. Kaneko, N. Kono, Y. Yoneda, K. Uesaka, M. Ekawa, M. Takechi, and H. Shoji, “InP-based monolithically integrated photonic devices for digital coherent transmission,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–11 (2018).
[Crossref]

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

IEEE Photonics J. (3)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach–Zehnder interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1–13 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14 µm Infrared Wavelength Range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-us switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photonics Technol. Lett. 16(9), 2039–2041 (2004).
[Crossref]

IEEE Trans. Electron Dev. (1)

W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Dev. 53(8), 1868–1876 (2006).
[Crossref]

J. Appl. Phys. (2)

P. Patsalas, C. Charitidis, S. Logothetidis, C. Dimitriadis, and O. Valassiades, “Combined electrical and mechanical properties of titanium nitride thin films as metallization materials,” J. Appl. Phys. 86(9), 5296–5298 (1999).
[Crossref]

M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys. 91(8), 5079–5088 (2002).
[Crossref]

J. Heat Trans. (1)

M. Asheghi, M. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Trans. 120(1), 30–36 (1998).
[Crossref]

J. Microelectromech. Syst. (1)

D. Hohlfeld and H. Zappe, “Thermal and optical characterization of silicon-based tunable optical thin-film filters,” J. Microelectromech. Syst. 16(3), 500–510 (2007).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Opt. Commun. (1)

K. Xiong, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “CMOS—compatible reconfigurable microring demultiplexer with doped silicon slab heater,” Opt. Commun. 285(21-22), 4368–4371 (2012).
[Crossref]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

Rev. Sci. Instrum. (1)

X. Zhang and C. P. Grigoropoulos, “Thermal conductivity and diffusivity of free‐standing silicon nitride thin films,” Rev. Sci. Instrum. 66(2), 1115–1120 (1995).
[Crossref]

Sci. Rep. (1)

A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep. 7(1), 7430 (2017).
[Crossref] [PubMed]

Other (19)

M. S. Rasras and O. Al Mrayat, “Lab-on-Chip Silicon Photonic Sensor,” in The IoT Physical Layer, I. Elfadel, M. Ismail, eds. (Springer, Cham, 2019).

C. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, and B. Guan, “O, E, S, C, and L band silicon photonics coherent modulator/receiver,” in Optical Fiber Communications Conference and Exhibition, (Optical Society of America, 2016), paper Th5C.4.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), pp. 15–16.
[Crossref]

P. Pintus, C. Manganelli, F. Gambini, F. Di Pasquale, M. Fournier, O. Lemonnier, C. Kopp, and C. J. Oton, “Optimization of integrated silicon doped heaters for optical microring resonators,” in ECOC2016; 42nd European Conference on Optical Communication, (VDE, 2016), pp. 1–3.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 234–236.
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, (OSA, 2009), paper CPDB10.
[Crossref]

B. Van Zeghbroeck, “Semiconductor Fundamentals,” in Principles of electronic devices (University of Colorado, 2011).

J. F. Shackelford, Y.-H. Han, S. Kim, and S.-H. Kwon, CRC materials science and engineering handbook (CRC, 2016).

M. W. Chase, Jr., “NIST-JANAF thermochemical tables, Monograph 9,” in J. Phys. Chem. Ref. Data, D. R. Burgess Jr, A. H. Harvey, eds. (American Chemical Society, 1998).

H. O. Pierson, Handbook of refractory carbides and nitrides (Elsevier, 1996).

E. Hecht, “The propagation of light,” in Optics, 4th Edition, Addison-Wesley, ed. (Pearson Education, 2002).

G. Eranna, Crystal Growth and Evaluation of Silicon for VLSI and ULSI (CRC, 2014).

D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, and D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” in Optical Interconnects Conference, (IEEE, 2014), TuD5.
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), pp. 83–84.
[Crossref]

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” in Integrated Optics: Devices, Materials, and Technologies VII, S. S. Yakov, A. Tervonen, eds. (International Society for Optics and Photonics, 2003), 149–160.

H. Matsuura, S. Suda, K. Tanizawa, K. Suzuki, K. Ikeda, H. Kawashima, and S. Namiki, “Accelerating switching speed of thermo-optic MZI silicon-photonic switches with “Turbo Pulse” in PWM Control,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), paper W4E. 3.
[Crossref]

M. J. Brinkman, W. K. Bischel, T. Kowalczyk, D. R. Main, and L. L. Huang, “Thermo-optic switch having fast rise-time,” US 6,351,578 B1 (2002).

K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and engineers (Princeton University, 2010).

R. H. Cannon, “Damped second-order systems,” in Dynamics of physical systems, McGraw-Hill, ed. (Courier Corporation, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Thermal and optical simulation of the TiN and N++ Si designs with the finite element method (FEM). (a) Temperature distribution at P π for both heaters. 23.9 mW is applied on the TiN resistor (left) and 25.2 mW in total is applied on the N++ Si resistors (right). (b) Temperature at P π as a function of lateral distance, at mid-waveguide height (y = 0.11 μm). (c) Transient analysis: temperature vs time at the waveguide core for heater power turn-on and turn-off (0 P π and P π 0).Dashed and full lines represent 1/e temperature changes for turn-on and turn-off. (d) Optical E field distribution (relative amplitude) for the fundamental mode at λ 0 =1550 nm in the TiN (top) and N++ Si (bottom) designs. (e) Optical phase vs. total heater power for a 320 μm long TOPS.
Fig. 2
Fig. 2 Simulated impact of resistor width on the performance of both TOPS designs. (a) Switching power P π ,(b) limiting time constant τ(0 P π or P π 0),and (c) P π τFOM vs. total resistive strip width (sum of the 2 strips for the N++ Si design).
Fig. 3
Fig. 3 Simulated impact of the intrinsic Si slab width Wbuffer, shown in Fig. 1 (a), on the performance of the N++ Si TOPS design. (a) P π , (b) limiting τ,(c) α, and (d) P π τand P π τ/ I r FOMs vs. Wbuffer.
Fig. 4
Fig. 4 Final heater layouts. (a) Cross-section (not to scale) and (b) top view of the TiN and N++ Si TOPS designs, plus metal contacts. Wstrip = 0.5 µm, WTiN = 7.5 µm, Hclad . = 2 µm, Hstrip = 0.22 µm, HBOX= 2 µm (TiN TOPS); WN + + = 1.0 µm, WSlab = 2.1 µm, Wrib = 0.5 µm, Hrib = 0.13 µm, Hslab = 0.09 µm (N++ Si TOPS). Layer colors match in (a) and (b). Current direction is arbitrary.
Fig. 5
Fig. 5 (a) Typical test structure for performance and crosstalk characterization of TOPS designs. dintra and dinter are respectively the intra- and inter-MZI pitch. (b) Experimental setup. Solid lines and dashed lines are respectively used for DC and AC characterization.
Fig. 6
Fig. 6 Electrical characterization of the fabricated TiN and N++ Si TOPS designs. (a) IV curves. Linear references are extrapolated from the [0-1] V segments. (b) Measured electrical power consumption over 10 minutes for a constant applied voltage.
Fig. 7
Fig. 7 Tunable MZI transfer function for the N++ Si heater (dintra = 200 μm). Optical power is shown vs. heater voltage in (a) and vs. heater power in (b). P π,1 = (23.2 ± 0.7) mW, P π,2 = (22.7 ± 1.1) mW, P π,3 = (22.1 ± 1.4) mW.
Fig. 8
Fig. 8 De-embedded phase change and linear fit as a function of heater power for 4 pitches dintra between the two arms of the tunable MZI, for the N++ Si and TiN heaters. Δ P π,N++ =0.6 mW and Δ P π,TiN =2.3 mW.
Fig. 9
Fig. 9 Measured phase change at quadrature in the victim MZI vs heater power for different aggressor/victim gap widths dinter. (a) TiN heater and default oxide in the gap. (b) N++ Si heater, default oxide in the gap. (c) N++ Si heater, etched oxide in the gap (dinter = 5 µm is absent because of layout rules). (d) N++ Si heater, deep trench in the gap.
Fig. 10
Fig. 10 AC measurements of the N++ Si and TiN heaters (dintra = 200 µm). (a) Frequency-domain: optical amplitude normalized to 1 kHz vs. frequency of the sine wave. (b) Time-domain: 5 kHz square electrical drive signal (top), and optical response of the TiN (middle) and N++(bottom) heaters. Exact response amplitude depends on FAU coupling.
Fig. 11
Fig. 11 Switch overshoot characterization. (a) Ideal 5 kHz square signal fast Fourier transform (FFT), and measured filter response of the N++ Si and TiN heaters. The FFT extends beyond 250 kHz, and filter definitions are extended (zero padding) to match the FFT length. (b) Ideal and filtered time domain signals (simulation) at 2 kHz, 5 kHz and 10 kHz. Modulation is done with a full V π swing.

Tables (3)

Tables Icon

Table 1 Recent SOI Thermo-Optic Phase-Shifters Implemented in Interferometric Structures

Tables Icon

Table 2 Comparison Summary between Optimal TiN-Based and Doped-Si-Based TOPS on SOI

Tables Icon

Table 3 Thermal and Electromagnetic Properties of Materials Used in FEM Simulations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P π =Δ T π GA,
τ=H/( GA ),
FOM= P π τ=Δ T π H
ΔΦ= 2πL λ 0 dn dT ΔT,
Δ T π = λ 0 2L dn/ dT .
FOM mod. = P π τ/ I r =Δ T π H/ e αL ,[mWμs]

Metrics