Abstract

We propose an optically rewritable dynamic phase grating based on polymer-templated azo liquid crystal in a blue-phase structure. The grating consists of alternating blue-phase and light-induced isotropic-phase regions, patterned by ultraviolet illumination. In the field-off state, the grating is hidden (showing no diffraction), due to index matching between the two phases. An index change is induced in the blue-phase regions when an external voltage is applied, while the refractive index of the isotropic-phase regions remains the same. The resulting periodic index modulation causes the grating to diffract light. The diffraction efficiency is independent of incident polarization, and the electro-optic response is in the sub-millisecond scale. Enabled by the reversible photoisomerism of the azobenzene, we demonstrate optical-patterning, -erasure, and re-patterning of a single liquid-crystal cell into different grating geometries.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal

Jin Yan, Yan Li, and Shin-Tson Wu
Opt. Lett. 36(8) 1404-1406 (2011)

Voltage selectable dual-mode optically-induced grating in ZnTPP doped chiral nematic liquid crystals

Mingya Xu, Hongzhen Jing, Ying Xiang, Yikun Liu, Zhigang Cai, Fujuan Wang, Jiaoyang Li, Everett Wang, Yanqing Wang, and Yinhua Cai
Opt. Mater. Express 7(4) 1317-1326 (2017)

Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light

Yachao Yuan, Yan Li, Chao Ping Chen, Shuxin Liu, Na Rong, Weihuan Li, Xiao Li, Pengcheng Zhou, Jiangang Lu, Ruili Liu, and Yikai Su
Opt. Express 23(15) 20007-20013 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Gibbons and S.-T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
    [Crossref]
  2. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  3. R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
    [Crossref] [PubMed]
  4. W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
    [Crossref]
  5. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  6. L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
    [Crossref]
  7. Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [Crossref]
  8. F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
    [Crossref] [PubMed]
  9. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
    [Crossref] [PubMed]
  10. J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  11. J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
    [Crossref]
  12. Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  13. J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
    [Crossref]
  14. Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
    [Crossref]
  15. C.-H. Lin, Y.-Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
    [Crossref] [PubMed]
  16. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  17. Y. Yuan, Y. Li, C.-P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23(15), 20007–20013 (2015).
    [Crossref] [PubMed]
  18. Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
    [Crossref]
  19. H.-C. Yeh, Y.-C. Kuo, S.-H. Lin, J.-D. Lin, T.-S. Mo, and S.-Y. Huang, “Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer,” Opt. Lett. 36(8), 1311–1313 (2011).
    [Crossref] [PubMed]
  20. X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).
  21. J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
    [Crossref]
  22. T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
    [Crossref] [PubMed]
  23. C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
    [Crossref]
  24. X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
    [Crossref] [PubMed]
  25. D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).
  26. H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
    [Crossref]

2017 (1)

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

2016 (1)

X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).

2015 (2)

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Y. Yuan, Y. Li, C.-P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23(15), 20007–20013 (2015).
[Crossref] [PubMed]

2013 (4)

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

2012 (3)

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

2011 (6)

2010 (1)

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (2)

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

2005 (2)

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

1994 (1)

W. M. Gibbons and S.-T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

Bisoyi, H. K.

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Bunning, T. J.

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Castles, F.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Chen, C.-H.

Chen, C.-P.

Chen, C.-W.

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Chen, H.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chigrinov, V.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Choi, S. S.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Coles, H. J.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Dai, H.

X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).

Day, F. V.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Dong, C.-Y.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Fan, C.-Y.

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Friend, R. H.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Gardiner, D. J.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Gauza, S.

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Ge, Z.

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Ge, Z. B.

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Gibbons, W. M.

W. M. Gibbons and S.-T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

Guo, J.

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Guo, X.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Hands, P. J. W.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

He, Z.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Hsieh, C.-W.

Hsu, H.-K.

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Hu, K.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Hu, W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Huang, S.-Y.

Huang, T.-H.

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Jau, H.-C.

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Jiao, M. Z.

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).

Ko, D.-H.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Kumar Srivastava, A.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Kuo, Y.-C.

Lai, W.-M.

Lee, S.-H.

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Li, C.-C.

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Li, Q.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Li, W.

Li, W.-Y.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, X.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Y. Yuan, Y. Li, C.-P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23(15), 20007–20013 (2015).
[Crossref] [PubMed]

Li, Y.

Liang, X.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lin, C.-H.

Lin, H.-C.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, J.-D.

Lin, S.-H.

Lin, T.-H.

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Lin, X.-W.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Lin, Y.-H.

Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y.-T.

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, and T.-H. Lin, “Study of electro-optical properties of templated blue phase liquid crystals,” Opt. Mater. Express 3(9), 1516–1522 (2013).
[Crossref]

Liu, C.-Y.

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Liu, R.

Liu, S.

Liu, Z.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Lu, J.

Lu, J.-G.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Lu, Y.-Q.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Luo, D.

X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).

Mo, T.-S.

Morris, S. M.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Nosheen, S.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Okumura, Y.

D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Qasim, M. M.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Qiang, J.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Ramsey, R. A.

Rao, L.

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Rong, N.

Sharma, S. C.

Shen, D.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Shi, Y.

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Shieh, H.-P. D.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Su, Y.

Y. Yuan, Y. Li, C.-P. Chen, S. Liu, N. Rong, W. Li, X. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23(15), 20007–20013 (2015).
[Crossref] [PubMed]

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Sugiura, N.

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Sun, J.-T.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Sun, S.-T.

W. M. Gibbons and S.-T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

Tsou, Y.-S.

Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Wang, C.-C.

Wang, C.-T.

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Wang, J.

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Wang, X.-Q.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Wang, Y.-Y.

Wei, J.

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Wu, S.-T.

J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Wu, Z.-J.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Xianyu, H.

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Xu, X.

X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).

Yamamoto, J.

D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).

Yan, J.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yang, K.

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Yang, W.-Q.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Ye, Z.-C.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Yeh, H.-C.

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yoshizawa, D.

D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).

Yu, F.-C.

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Yuan, C.-L.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Yuan, Y.

Zheng, Z. G.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Zhong, E.-W.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Zhou, K.

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Zhou, P.

Zhu, G.

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

Zhu, J.-L.

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

Adv. Mater. (1)

T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film,” Adv. Mater. 25(36), 5050–5054 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

W. M. Gibbons and S.-T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett. 65(20), 2542–2544 (1994).
[Crossref]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[Crossref]

L. Rao, Z. Ge, S.-T. Wu, and S.-H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[Crossref]

Z. B. Ge, S. Gauza, M. Z. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

IEEE Photonics J. (1)

X. Xu, D. Luo, and H. Dai, “Optically switchable circularly polarization-dependent optical vortex,” IEEE Photonics J. 8, 1–7 (2016).

J. Appl. Phys. (4)

Y.-T. Lin, H.-C. Jau, and T.-H. Lin, “Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal,” J. Appl. Phys. 113(6), 063103 (2013).
[Crossref]

J.-L. Zhu, J.-G. Lu, J. Qiang, E.-W. Zhong, Z.-C. Ye, Z. He, X. Guo, C.-Y. Dong, Y. Su, and H.-P. D. Shieh, “1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal,” J. Appl. Phys. 111(3), 033101 (2012).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114(15), 153104 (2013).
[Crossref]

Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110(11), 114516 (2011).
[Crossref]

J. Disp. Technol. (1)

C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.-C. Yu, T.-H. Huang, C.-Y. Liu, and N. Sugiura, “Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase lcs,” J. Disp. Technol. 7(11), 615–618 (2011).
[Crossref]

Nat. Mater. (2)

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. Express (1)

RSC Advances (1)

J. Wang, Y. Shi, K. Yang, J. Wei, and J. Guo, “Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies,” RSC Advances 5(82), 67357–67364 (2015).
[Crossref]

Sci. Rep. (1)

X. Li, W.-Q. Yang, C.-L. Yuan, Z. Liu, K. Zhou, X.-Q. Wang, D. Shen, and Z. G. Zheng, “Enhanced low-temperature electro-optical kerr effect of stable cubic soft superstructure enabled by fluorinated polymer stabilization,” Sci. Rep. 7(1), 10383 (2017).
[Crossref] [PubMed]

Other (1)

D. Yoshizawa, Y. Okumura, J. Yamamoto, and H. Kikuchi, “Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity,” Polym. J. In Press. (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fabrication procedure of BP-templated azo-LC cell with photo-patterned grating.
Fig. 2
Fig. 2 (a) Reflection micrograph of 1D BP–ISO grating, and their far-field diffraction patterns captured at (b) 0 V and (c) 50 V, respectively. (d) First-order diffraction efficiency as a function of applied voltage.
Fig. 3
Fig. 3 Polarization polar diagrams of (a) 0°-polarized and (b) 45°-polarized incident probe beams and their first-order diffractions.
Fig. 4
Fig. 4 Dynamics of the first-order diffraction intensity showing the electro-optic response of the BP-templated azo-LC cell in the (a) rise and (b) decay processes (50 V, 25°C).
Fig. 5
Fig. 5 (a) Reflection micrograph and (b) (c) far-field diffraction patterns of a 2D BP–ISO array obtained by erasing the previous 1D grating and repatterning the sample into a 2D grating. The diffractions in (b) and (c) were captured at 0 V and 50 V, respectively. (d) Reflection micrograph of the same BP-templated azo-LC cell repatterned into a Fresnel zone plate.

Metrics