Abstract

Using a sub-millimeter exciton-polariton waveguide suitable for integrated photonics, we experimentally demonstrate nonlinear modulation of pico-Joule pulses at the same time as amplification sufficient to compensate the system losses. By comparison with a numerical model we explain the observed interplay of gain and nonlinearity as amplification of the interacting polariton field by stimulated scattering from an incoherent continuous-wave reservoir that is depleted by the pulses. This combination of gain and giant ultrafast nonlinearity operating on picosecond pulses has the potential to open up new directions in low-power all-optical information processing and nonlinear photonic simulation of conservative and driven-dissipative systems.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of exciton-polaritons in ZnO-based hybrid microcavities

Jun-Rong Chen, Tien-Chang Lu, Yung-Chi Wu, Shiang-Chi Lin, Wen-Feng Hsieh, Shing-Chung Wang, and Hui Deng
Opt. Express 19(5) 4101-4112 (2011)

Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths

Jassem Safioui, François Leo, Bart Kuyken, Simon-Pierre Gorza, Shankar Kumar Selvaraja, Roel Baets, Philippe Emplit, Gunther Roelkens, and Serge Massar
Opt. Express 22(3) 3089-3097 (2014)

Optical nonlinearity, bistability, and signal processing in semiconductors

N. Peyghambarian and H. M. Gibbs
J. Opt. Soc. Am. B 2(7) 1215-1227 (1985)

References

  • View by:
  • |
  • |
  • |

  1. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
    [Crossref]
  2. D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
    [Crossref] [PubMed]
  3. A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
    [Crossref]
  4. M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
    [Crossref]
  5. A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
    [Crossref] [PubMed]
  6. T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
    [Crossref] [PubMed]
  7. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
    [Crossref] [PubMed]
  8. S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
    [Crossref] [PubMed]
  9. P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
    [Crossref]
  10. P.-E. Larré and I. Carusotto, “Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches,” Phys. Rev. A 92, 043802 (2015).
    [Crossref]
  11. P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
    [Crossref]
  12. P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
    [Crossref] [PubMed]
  13. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
    [Crossref] [PubMed]
  14. R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
    [Crossref]
  15. G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
    [Crossref]
  16. R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
    [Crossref] [PubMed]
  17. J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
    [Crossref]
  18. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
    [Crossref]
  19. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
    [Crossref]
  20. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
    [Crossref] [PubMed]
  21. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
    [Crossref] [PubMed]
  22. R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
    [Crossref]
  23. G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [Crossref]
  24. T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Light. Technol. 6, 1656–1664 (1988).
    [Crossref]
  25. D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
    [Crossref]
  26. O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
    [Crossref] [PubMed]
  27. S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
    [Crossref]
  28. V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
    [Crossref]
  29. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref] [PubMed]
  30. S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
    [Crossref] [PubMed]
  31. M. Wouters and I. Carusotto, “Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons,” Phys. Rev. Lett. 99, 140402 (2007).
    [Crossref] [PubMed]
  32. K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
    [Crossref]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), 3rd ed.
  34. A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
    [Crossref]

2018 (1)

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

2017 (2)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

2016 (4)

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref] [PubMed]

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
[Crossref]

2015 (3)

S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
[Crossref] [PubMed]

P.-E. Larré and I. Carusotto, “Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches,” Phys. Rev. A 92, 043802 (2015).
[Crossref]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

2014 (1)

D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
[Crossref]

2013 (4)

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

2012 (1)

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

2011 (1)

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

2010 (2)

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

2009 (1)

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

2008 (3)

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

2007 (2)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

M. Wouters and I. Carusotto, “Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons,” Phys. Rev. Lett. 99, 140402 (2007).
[Crossref] [PubMed]

2000 (4)

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
[Crossref]

1995 (1)

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

1989 (1)

G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

1988 (1)

T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Light. Technol. 6, 1656–1664 (1988).
[Crossref]

1987 (1)

K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
[Crossref]

Adrados, C.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Agrawal, G.

G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), 3rd ed.

Amo, A.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Amthor, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Astratov, V. N.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

Bajoni, D.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Balili, R.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Ballarini, D.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Baumberg, J. J.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

Bloch, J.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Bouchoule, S.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Bramati, A.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Brichkin, A. S.

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Cambril, E.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Cancellieri, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Carusotto, I.

P.-E. Larré and I. Carusotto, “Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches,” Phys. Rev. A 92, 043802 (2015).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

M. Wouters and I. Carusotto, “Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons,” Phys. Rev. Lett. 99, 140402 (2007).
[Crossref] [PubMed]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Cingolani, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

De Giorgi, M.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

del Valle-Inclan Redondo, Y.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

Deligeorgis, G.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

Deparis, C.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Disseix, P.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Dmitriev, S. V.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Dreismann, A.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

Durska, M.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Emam-Ismail, M.

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

Farrer, I.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Giacobino, E.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Gibernon, J. L.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Gigli, G.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Glazov, M. M.

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Hatzopoulos, Z.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

Hoefling, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Höfling, S.

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Houdre, R.

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

Houdré, R.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Huang, J.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Huang, R.

R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
[Crossref]

Ilegems, M.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Inoue, K.

K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
[Crossref]

Jamadi, O.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Kamp, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Kavokin, A. V.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

Kéna-Cohen, S.

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref] [PubMed]

Kim, N. Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Konotop, V. V.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
[Crossref]

Konstantinidis, G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

Krizhanovskii, D. N.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Lai, C.-W.

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

Larionov, A. V.

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Larré, P.-E.

P.-E. Larré and I. Carusotto, “Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches,” Phys. Rev. A 92, 043802 (2015).
[Crossref]

Lee, C.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Lemaître, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Leroux, M.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Leymarie, J.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Liew, T. C. H.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

Luxmoore, I. J.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Malpuech, G.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
[Crossref]

Malzard, S.

S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
[Crossref] [PubMed]

Marchetti, F. M.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Medard, F.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Miard, A.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Moreau, A.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Mukai, T.

T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Light. Technol. 6, 1656–1664 (1988).
[Crossref]

K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
[Crossref]

Novikov, S. I.

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

O’Gorman, J.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Oesterle, U.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Ohadi, H.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

Olsson, N.

G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Pelekanos, N. T.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

Pellandini, P.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Poli, C.

S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
[Crossref] [PubMed]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Reveret, F.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Ritchie, D. A.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Roberts, J. S.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

Roumpos, G.

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

Royall, B.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Roycroft, B.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Rubo, Y. G.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

Sagnes, I.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Saitoh, T.

T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Light. Technol. 6, 1656–1664 (1988).
[Crossref]

K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
[Crossref]

Sanvitto, D.

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref] [PubMed]

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Savvidis, P. G.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

Schneider, C.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

Schomerus, H.

S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
[Crossref] [PubMed]

Senellart, P.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

Skolnick, M. S.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

Skryabin, D. V.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Solnyshkov, D.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Solnyshkov, D. D.

D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
[Crossref]

Stanley, R. P.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Stevenson, R. M.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

Suchkov, S. V.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Sukhorukov, A. A.

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Szymanska, M. H.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Tartakovskii, A. I.

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

Tassone, F.

R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
[Crossref]

Tejedor, C.

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

Tercas, H.

D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
[Crossref]

Tinkler, L.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Tsintzos, S. I.

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

Walker, P. M.

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

Weisbuch, C.

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Wertz, E.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Whittaker, D. M.

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

Wouters, M.

M. Wouters and I. Carusotto, “Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons,” Phys. Rev. Lett. 99, 140402 (2007).
[Crossref] [PubMed]

Yamamoto, Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
[Crossref]

Yang, J.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
[Crossref]

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Yulin, A.

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Zezyulin, D. A.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Zuniga-Perez, J.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J. Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick, I. Farrer, and D. A. Ritchie, “Exciton polaritons in semiconductor waveguides,” Appl. Phys. Lett. 102, 012109 (2013).
[Crossref]

D. D. Solnyshkov, H. Tercas, and G. Malpuech, “Optical amplifier based on guided polaritons in GaN and ZnO,” Appl. Phys. Lett. 105, 231102 (2014).
[Crossref]

Electron. Lett. (1)

K. Inoue, T. Mukai, and T. Saitoh, “Gain saturation dependence on signal wavelength in a travelling-wave semiconductor laser amplifier,” Electron. Lett. 23, 328 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

J. Light. Technol. (1)

T. Saitoh and T. Mukai, “Recent progress in semiconductor laser amplifiers,” J. Light. Technol. 6, 1656–1664 (1988).
[Crossref]

Laser Photonics Rev. (1)

S. V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C. Lee, and Y. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems,” Laser Photonics Rev. 10, 177–213 (2016).
[Crossref]

Light. Sci. Appl. (1)

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, E. Cambril, S. Bouchoule, J. Zuniga-Perez, and G. Malpuech, “Edge-emitting polariton laser and amplifier based on a ZnO waveguide,” Light. Sci. Appl. 7, 82 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Ultra-low-power hybrid light–matter solitons,” Nat. Commun. 6, 8317 (2015).
[Crossref]

Nat. Mater. (2)

D. Sanvitto and S. Kéna-Cohen, “The road towards polaritonic devices,” Nat. Mater. 15, 1061–1073 (2016).
[Crossref] [PubMed]

A. Dreismann, H. Ohadi, Y. del Valle-Inclan Redondo, R. Balili, Y. G. Rubo, S. I. Tsintzos, G. Deligeorgis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates,” Nat. Mater. 15, 1074–1078 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton-polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Nature (3)

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372–375 (2008).
[Crossref] [PubMed]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, “An electrically pumped polariton laser,” Nature 497, 348–352 (2013).
[Crossref] [PubMed]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref] [PubMed]

Phys. Rev. A (1)

P.-E. Larré and I. Carusotto, “Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches,” Phys. Rev. A 92, 043802 (2015).
[Crossref]

Phys. Rev. B (5)

R. Huang, F. Tassone, and Y. Yamamoto, “Experimental evidence of stimulated scattering of excitons into microcavity polaritons,” Phys. Rev. B 61, R7854–R7857 (2000).
[Crossref]

G. Roumpos, C.-W. Lai, T. C. H. Liew, Y. G. Rubo, A. V. Kavokin, and Y. Yamamoto, “Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light,” Phys. Rev. B 79, 195310 (2009).
[Crossref]

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation,” Phys. Rev. B 62, R16247 (2000).
[Crossref]

A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, “Effect of coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities,” Phys. Rev. B 84, 195301 (2011).
[Crossref]

R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, “Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons,” Phys. Rev. B 52, 7810–7813 (1995).
[Crossref]

Phys. Rev. Lett. (8)

S. Malzard, C. Poli, and H. Schomerus, “Topologically protected defect states in open photonic systems with non-hermitian charge-conjugation and parity-time symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
[Crossref] [PubMed]

M. Wouters and I. Carusotto, “Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons,” Phys. Rev. Lett. 99, 140402 (2007).
[Crossref] [PubMed]

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single MicropillarGaAs-GaAlAsSemiconductor cavities,” Phys. Rev. Lett. 100, 047401 (2008).
[Crossref]

R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, “Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities,” Phys. Rev. Lett. 85, 3680–3683 (2000).
[Crossref] [PubMed]

P. M. Walker, L. Tinkler, B. Royall, D. V. Skryabin, I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Dark solitons in high velocity waveguide polariton fluids,” Phys. Rev. Lett. 119, 097403 (2017).
[Crossref] [PubMed]

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-resonant stimulated polariton amplifier,” Phys. Rev. Lett. 84, 1547–1550 (2000).
[Crossref] [PubMed]

M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti, M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino, A. Bramati, G. Gigli, and D. Sanvitto, “Control and ultrafast dynamics of a two-fluid polariton switch,” Phys. Rev. Lett. 109, 266407 (2012).
[Crossref]

T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, “Optical circuits based on polariton neurons in semiconductor microcavities,” Phys. Rev. Lett. 101, 016402 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (3)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton bose-einstein condensation,” Rev. Mod. Phys. 82, 1489–1537 (2010).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
[Crossref]

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in PT -symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
[Crossref]

Science (1)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the optical setup for excitation of the sample and detection of the emission. Inset in the bottom left is a top-down schematic of the sample surface showing the low power picosecond pulsed probe laser spot on the input grating coupler and the CW pump spot between the grating couplers. (b) Spectra of the light collected at the output grating for the maximum pump power of 50mW and the minimum probe power corresponding to 72fJ pulses. The horizontal axis gives the frequency offset from that of the exciton, δ = ωωX. A detailed description of the legend labelling is given in the text. Stot, SCW and S0 are the spectra obtained when, respectively, both pump and probe beams are switched on, only the pump beam is switched on, only the probe beam is switched on. SA is obtained by subtracting SCW from Stot.
Fig. 2
Fig. 2 Gain experienced by the probe pulses as a function of pump power for various probe detunings and pulse energies. Experimental data are shown as points and results of numerical simulations are shown as solid lines. Panels (a), (b), and (c) show data for probe pulse energies of 72fJ, 720fJ and 7.2pJ respectively. For clarity error bars are only shown for every fifth point but are of similar size for all points.
Fig. 3
Fig. 3 Interplay of gain and nonlinear polariton-polariton interactions. (a) Output spectrum I0 at zero pump and (b) amplified spectrum IA at the highest pump power both for 7.2pJ probe pulse with central frequency detuning δ0 = −5.6 meV. The solid black curve denotes the half-maximum contour of the input pulse spectrum. (c) Difference between IA and I0. The color scales are normalized to peak of I0. (d) Integrals S0 and SA of the spectra I0 and IA over the x direction, and the difference between S0 and SA, for pump and probe parameters corresponding to panels (a–c). The black dotted curve shows the spectrum of the input pulse.
Fig. 4
Fig. 4 Comparison of experimental and simulated spectra. All panels show the integrals S0 and SA of the unamplified and maximum-pump spectra I0 and IA over the x direction, and the difference between them, as identified in the legend in panel (d). (a) Experimental and (c) simulated spectra for 720fJ probe pulses. (b) Experimental and (d) simulated spectra for 7.2pJ probe pulses. The black dotted line in (b) gives the pulse spectrum at the waveguide input. All probe pulses have central frequency detuning δ0 = −5.6 meV.
Fig. 5
Fig. 5 Comparison of simulated output spectra for different input pulse temporal widths (full widths at half maximum). All panels show the spectrum without pump, S0, and the spectrum with maximum pump, SA. The input pulse central frequency detuning for all pulses is δ0 = −5.6 meV. The peak density is fixed between pulses of different widths so the pulse energy varies proportional to the temporal width. (a–d) Spectra for pulses with the same peak density as the 2 picosecond, 720fJ pulse but temporal widths of 1,2,4 and 8 picoseconds respectively. (e–h) Spectra for pulses with the same peak density as the 2 picosecond, 7.2pJ pulse but temporal widths of 1,2,4 and 8 picoseconds respectively. In all panels the data are normalized to the peak of S0.

Tables (1)

Tables Icon

Table 1 Gain at the maximum pump power for all the different probe parametersa.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i ψ ˙ = [ ε i γ 2 + ( g + i R 2 ) n + α | ψ | 2 ] ψ + F ,
n ˙ = ( Γ + R | ψ | 2 ) n + P .
ε ^ = ε ^ X + ε ^ P 2 ( ε ^ P ε ^ X ) 2 + Ω 2 2 ,
F = F 0 exp [ i ( ω p t k p z ) t 2 / 2 σ t 2 z 2 / 2 σ z 2 ] ,
P = P 0 exp [ ( z z 0 ) 6 / 2 σ CW 6 ] .

Metrics