Abstract

The long-wavelength infrared (LWIR) micro-lens arrays, as one of the important components in wafer level thermal optics, have been applied for wavefront sensing, beam shaping, integral imaging, and other thermal optical applications. Recently, electromagnetic metasurfaces provide a promising platform for designing high-performance, lightweight and ultracompact optical elements. Here, we experimentally demonstrate a 60 × 60 transmissive type, polarization-independent LWIR micro-lens array based on all-silicon metasurfaces with a fill factor approaching 100%. Each single micro-metalens with a pitch of 100 μm and a focal length of 100 μm operating at λ = 10.6 μm, can focus the light to a spot with a full-width at half-maximum (FWHM) of 12.7 μm (~1.2λ) at the focal plane. Considering the fact of single-step photolithography and standard integrated circuit (IC) compatible fabrication processes, these metasurface-based micro-lens arrays may have great potentials in compact thermal imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric metalens for terahertz wave imaging

Xue Jiang, Hao Chen, Zeyu Li, Hongkuan Yuan, Luyao Cao, Zhenfei Luo, Kun Zhang, Zhihai Zhang, Zhongquan Wen, Li-guo Zhu, Xun Zhou, Gaofeng Liang, Desheng Ruan, Lianghui Du, Lingfang Wang, and Gang Chen
Opt. Express 26(11) 14132-14142 (2018)

Subdiffraction focusing lens based on quadrangular-frustum pyramid-shaped metasurface

Huaixin Li, Qi Zhang, Xue Jiang, Gaofeng Liang, Zhongquan Wen, Zhihai Zhang, Zhengguo Shang, and Gang Chen
Appl. Opt. 58(28) 7688-7692 (2019)

Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime

Huifang Zhang, Xueqian Zhang, Quan Xu, Qiu Wang, Yuehong Xu, Minggui Wei, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xixiang Zhang, Cong Hu, Jiaguang Han, and Weili Zhang
Photon. Res. 6(1) 24-29 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Symmons and R. Pini, “A practical approach to LWIR wafer-level optics for thermal imaging systems,” Proc. SPIE 8704, 870425 (2013).
    [Crossref]
  2. A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
    [Crossref]
  3. S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
    [Crossref]
  4. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
  5. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008).
    [Crossref] [PubMed]
  6. N. T. Gordon, “Design of Hg1-xCdxTe infrared detector arrays using optical immersion with microlenses to achieve a higher operating temperature,” Semicond. Sci. Technol. 6(12C), C106–C109 (1991).
    [Crossref]
  7. J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
    [Crossref]
  8. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2–3), 59–210 (2003).
    [Crossref]
  9. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [Crossref] [PubMed]
  10. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46(1-2), 115–131 (2004).
    [Crossref]
  11. F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik (Stuttg.) 113(9), 391–404 (2002).
    [Crossref]
  12. D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).
  13. X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
    [Crossref]
  14. Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
    [Crossref] [PubMed]
  15. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive optics: design, fabrication, and test (SPIE, 2004).
  16. S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
    [Crossref]
  17. N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21–A30 (2016).
    [Crossref]
  18. X. Luo, “Subwavelength optical engineering with metasurface waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
    [Crossref]
  19. X. Luo, “Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems,” ACS Photonics 5(12), 4724–4738 (2018).
    [Crossref]
  20. X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
    [Crossref]
  21. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref] [PubMed]
  22. Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
    [Crossref] [PubMed]
  23. S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
    [Crossref] [PubMed]
  24. Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
    [Crossref]
  25. Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43(24), 6005–6008 (2018).
    [Crossref] [PubMed]
  26. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
    [Crossref]
  27. Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
    [Crossref] [PubMed]
  28. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  29. X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
    [Crossref]
  30. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
    [Crossref] [PubMed]
  31. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref] [PubMed]
  32. M. Khorasaninejad, W. Zhu, and K. B. Crozier, “Efficient polarization beam splitter pixels based on a dielectric metasurface,” Optica 2(4), 376–382 (2015).
    [Crossref]
  33. K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
    [Crossref] [PubMed]
  34. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref] [PubMed]
  35. J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
    [Crossref]
  36. S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
    [Crossref]
  37. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  38. H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
    [Crossref]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

2018 (10)

X. Luo, “Subwavelength optical engineering with metasurface waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

X. Luo, “Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems,” ACS Photonics 5(12), 4724–4738 (2018).
[Crossref]

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43(24), 6005–6008 (2018).
[Crossref] [PubMed]

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

2017 (4)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

2016 (4)

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

N. M. Estakhri and A. Alù, “Recent progress in gradient metasurfaces,” J. Opt. Soc. Am. B 33(2), A21–A30 (2016).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

2015 (4)

M. Khorasaninejad, W. Zhu, and K. B. Crozier, “Efficient polarization beam splitter pixels based on a dielectric metasurface,” Optica 2(4), 376–382 (2015).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

2013 (2)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

A. Symmons and R. Pini, “A practical approach to LWIR wafer-level optics for thermal imaging systems,” Proc. SPIE 8704, 870425 (2013).
[Crossref]

2008 (2)

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008).
[Crossref] [PubMed]

2006 (2)

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).

2004 (2)

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46(1-2), 115–131 (2004).
[Crossref]

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2–3), 59–210 (2003).
[Crossref]

2002 (1)

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik (Stuttg.) 113(9), 391–404 (2002).
[Crossref]

2001 (1)

2000 (1)

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

1998 (1)

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

1991 (1)

N. T. Gordon, “Design of Hg1-xCdxTe infrared detector arrays using optical immersion with microlenses to achieve a higher operating temperature,” Semicond. Sci. Technol. 6(12C), C106–C109 (1991).
[Crossref]

Aieta, F.

Alù, A.

Arbabi, A.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Arbabi, E.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Bich, A.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Bitterli, R.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Brady, D.

Capasso, F.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Carriere, J.

Chao, C.-K.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Chen, C.

Chen, J.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Chen, J. W.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Cohen, M.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Crozier, K. B.

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

de Rooij, N.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Demoustier, S.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Deng, Y.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Ding, F.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Dong, K.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Dumouchel, C.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Dwivedi, P. K.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Eisner, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Estakhri, N. M.

Fan, Q.

Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43(24), 6005–6008 (2018).
[Crossref] [PubMed]

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Faraon, A.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Gabay, I.

Gao, H.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Gao, P.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Gawron, W.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Gibbons, R.

Gong, Z.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Gordon, N. T.

N. T. Gordon, “Design of Hg1-xCdxTe infrared detector arrays using optical immersion with microlenses to achieve a higher operating temperature,” Semicond. Sci. Technol. 6(12C), C106–C109 (1991).
[Crossref]

Grudzien, M.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Gu, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Gu, M.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

Guerineau, N.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Gunapala, S. D.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Guo, Y.

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

Haidar, R.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Han, J.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

He, M.

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Herzig, H. P.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Hong, M.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Hung Chu, C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Huo, P.

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Ichioka, Y.

Ishida, K.

Jin, J.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Kamali, S. M.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Keo, S. A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Khorasaninejad, M.

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Kim, M. H.

Kondou, N.

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Kumagai, T.

Kumaresan, Y.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Li, X.

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Liang, Y.

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Lin, C.-P.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Ling, X.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, H.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, K.

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

Liu, M.

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43(24), 6005–6008 (2018).
[Crossref] [PubMed]

Lou, S.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Lu, S. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Luo, J.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Luo, X.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

X. Luo, “Subwavelength optical engineering with metasurface waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

X. Luo, “Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems,” ACS Photonics 5(12), 4724–4738 (2018).
[Crossref]

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Ma, X.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Mansuripur, T.

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Miclos, S.

D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Noell, W.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Nowak, Z.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

O’Neill, F. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik (Stuttg.) 113(9), 391–404 (2002).
[Crossref]

Orman, Z.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Pawluczyk, J.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Pégard, N.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Pini, R.

A. Symmons and R. Pini, “A practical approach to LWIR wafer-level optics for thermal imaging systems,” Proc. SPIE 8704, 870425 (2013).
[Crossref]

Piotrowski, J.

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46(1-2), 115–131 (2004).
[Crossref]

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Pitsianis, N.

Prather, D.

Primot, J.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Pu, M.

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Qiu, C. W.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Rafol, S. B.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Ramanan, N.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Rammohan, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

Rank, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Rieck, J.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Rogalski, A.

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46(1-2), 115–131 (2004).
[Crossref]

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2–3), 59–210 (2003).
[Crossref]

Romanis, M.

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

Roth, S.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Rousso, D.

Ruffieux, P.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Savastru, D.

D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).

Savastru, R.

D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).

Scharf, T.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Schmidt, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Schulz, T.

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Shankar, M.

Sharma, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

She, A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Sheridan, J. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik (Stuttg.) 113(9), 391–404 (2002).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Soibel, A.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Symmons, A.

A. Symmons and R. Pini, “A practical approach to LWIR wafer-level optics for thermal imaging systems,” Proc. SPIE 8704, 870425 (2013).
[Crossref]

Tanida, J.

Te Kolste, R.

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Tian, Z.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Ting, D. Z.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Tom, K. B.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Troccoli, M.

Tsai, D.

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Velghe, S.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Voelkel, R.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Waller, L.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Wang, D.

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Wattellier, B.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Wei, M.-K.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Weible, K. J.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

Willett, R.

Wilson, D.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Xie, X.

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Xu, T.

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43(24), 6005–6008 (2018).
[Crossref] [PubMed]

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Xu, Y.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Yamada, K.

Yan, F.

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Yang, C.

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Yang, F.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Yang, H.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Yang, K.

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Yao, J.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Yi, X. J.

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

You, Z.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Yu, H.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Yu, L.

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Yu, N.

Yue, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

S. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu, and F. Capasso, “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Opt. Express 24(16), 18024–18034 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, X.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

Zhang, Z.

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Zhao, X. R.

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Zhu, W.

Zimmermann, M.

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref] [PubMed]

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

X. Luo, “Engineering Optics 2.0: A Revolution in Optical Materials, Devices, and Systems,” ACS Photonics 5(12), 4724–4738 (2018).
[Crossref]

Adv. Funct. Mater. (2)

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, and X. Luo, “Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion,” Adv. Funct. Mater. 28(14), 1706673 (2018).
[Crossref]

Adv. Mater. (2)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, L. Waller, and J. Yao, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), e1802632 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

X. Luo, “Subwavelength optical engineering with metasurface waves,” Adv. Opt. Mater. 6(7), 1701201 (2018).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A Broadband Metasurface-Based Terahertz Flat-Lens Array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Adv. Opt. Photonics (1)

X. Luo, D. Tsai, M. Gu, and M. Hong, “Subwavelength interference of light on structured surfaces,” Adv. Opt. Photonics 10(4), 757–842 (2018).
[Crossref]

Ann. Phys. (1)

J. Jin, X. Zhang, P. Gao, J. Luo, Z. Zhang, X. Li, X. Ma, M. Pu, and X. Luo, “Ultrathin Planar Microlens Arrays Based on Geometric Metasurface,” Ann. Phys. 530(2), 1700326 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala, and F. Capasso, “Solid-immersion metalenses for infrared focal plane arrays,” Appl. Phys. Lett. 113(11), 111104 (2018).
[Crossref]

Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, “A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,” Appl. Phys. Lett. 113(20), 201104 (2018).
[Crossref]

Infrared Phys. Technol. (1)

J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Phys. Technol. 46(1-2), 115–131 (2004).
[Crossref]

J. Micromech. Microeng. (1)

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

D. Savastru, S. Miclos, and R. Savastru, “Infrared chalcogenide microlenses,” J. Optoelectron. Adv. Mater. 8(3), 1165–1172 (2006).

Nanophotonics (1)

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Nanoscale (1)

K. Yang, M. Pu, X. Li, X. Ma, J. Luo, H. Gao, and X. Luo, “Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface,” Nanoscale 8(24), 12267–12271 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Optik (Stuttg.) (1)

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik (Stuttg.) 113(9), 391–404 (2002).
[Crossref]

Proc. SPIE (5)

X. Y. Zhang, X. J. Yi, M. He, and X. R. Zhao, “128x128-element silicon microlens array fabricated by ion-beam etching for PtSi IRCCD,” Proc. SPIE 3551, 191–198 (1998).
[Crossref]

J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg 1-x Cd x Te LWIR detectors,” Proc. SPIE 4130, 175–185 (2000).
[Crossref]

A. Symmons and R. Pini, “A practical approach to LWIR wafer-level optics for thermal imaging systems,” Proc. SPIE 8704, 870425 (2013).
[Crossref]

A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, R. Voelkel, M. Zimmermann, M. Rank, M. Schmidt, R. Bitterli, N. Ramanan, P. Ruffieux, T. Scharf, W. Noell, H. P. Herzig, and N. de Rooij, “Multifunctional micro-optical elements for laser beam homogenizing and beam shaping,” Proc. SPIE 6879, 68790Q (2008).
[Crossref]

S. Velghe, J. Primot, N. Guerineau, R. Haidar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
[Crossref]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron. 27(2–3), 59–210 (2003).
[Crossref]

Sci. Rep. (1)

Q. Fan, P. Huo, D. Wang, Y. Liang, F. Yan, and T. Xu, “Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays,” Sci. Rep. 7(1), 45044 (2017).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

N. T. Gordon, “Design of Hg1-xCdxTe infrared detector arrays using optical immersion with microlenses to achieve a higher operating temperature,” Semicond. Sci. Technol. 6(12C), C106–C109 (1991).
[Crossref]

Other (3)

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive optics: design, fabrication, and test (SPIE, 2004).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Left side: schematic of a LWIR micro-metalens. Right side: side-view and top-view of the micro-metalens unit cell (a Si pillar on a Si substrate with a square lattice). Note that two different colors (blue and gray) are only used to distinguish the silicon pillar from the silicon substrate. (b) The normalized magnetic energy density in a periodic array for the Si pillar diameter D = 2.5 μm. The dashed white circles and rectangles show the boundaries of the Si pillars. Scale bar, 2 μm. (c), (d) Transmission amplitude and phase of the transmission coefficient variation as a function of a Si pillar diameter (D) and period (U) at λ = 10.6 μm.
Fig. 2
Fig. 2 (a) The discrete phase profile of a micro-metalens. (b) Simulated far-field intensity distribution of the 2 × 2 micro-lens array in the x-z plane. (c) Simulated far-field intensity distribution of the 2 × 2 micro-lens array in the x-y plane at the focus. Here, the simulations are performed with either TM or TE polarized light at λ = 10.6μm.
Fig. 3
Fig. 3 (a) Top-view optical photograph of the fabricated 60 × 60 LWIR micro-lens array. Scale bar: 1 mm. (b) Top-view optical microscope picture of the 6 × 6 microlens array. Scale bar: 100 μm. (c) Top-view scanning electron micrograph image of a single micro-metalens. Scale bar: 20 μm. The inset is the zoomed-in SEM image. Scale bar: 5 μm. (d) Side-view scanning electron micrograph image of a single micro-metalens. Scale bar: 20 μm. The inset is the zoomed-in SEM image. Scale bar: 5 μm.
Fig. 4
Fig. 4 (a) Experimental setup for the characterization of the LWIR micro-lens array. The infrared camera attached with the reflective objective lens is fastened to a translation stage. (b) The measured focal spot profiles for a single metalens along the optical axis at different z values. The z value of 100 μm is the position of the focal plane. (c) Measured and simulated intensity distributions of the focal spot along x-directions on the focal plane (d) Measured focal spot profile of a portion of the whole micro-lens array (4 × 4 micro-lens array). Scale bar: 100 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ ( x , y ) = 2 π λ ( f x 2 + y 2 + f 2 )

Metrics