Abstract

Near-surface nanoscale damage precursor generated from the fabrication process has great influence on laser-induced damage threshold improvement of fused silica. In this work, high-resolution transmission electron microscopy (HRTEM) is used to characterize the arrangement of material particles near surface. The nanoscale defects in the Beilby layer could be clearly distinguished. And we find ion beam etching (IBE) has little effect on the arrangement of material particles. This microscopic phenomenon makes IBE a promising technique for the detection of nanoscale near-surface damage precursors. To further investigate the nanoscale near-surface damage after chemical mechanical polishing, a trench is generated by ion sputtering to contain the nature and characteristics of nanoscale precursors in different depths. The evolutions of chemical structure defects and nanoparticles are measured and their laser-induced absorption performance are tested. The results show that there is a nanoscale defect layer (~360nm) beneath the Beilby layer. A model for nanoscale defect layer of fused silica after CMP is offered. In the model, the quantitative density of nanoparticles falls exponentially with increasing the depth and the contents of ODC and NBOHC decreases linearly, respectively. Research results can be a reference on characterizing nanoscale defects near surface and conducting post-processing technologies to improve the laser damage resistance property of fused silica.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

Laser absorption precursor research: microstructures in the subsurface of mono-crystalline silicon substrate

Ye Tian, Feng Shi, Yifan Dai, Xiaoqiang Peng, and Yaoyu Zhong
Appl. Opt. 56(30) 8507-8512 (2017)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
    [Crossref]
  2. J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [Crossref]
  3. T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in International Optical Design Conference and Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2010), paper OWA1.
  4. Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
    [Crossref] [PubMed]
  5. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
    [Crossref] [PubMed]
  6. P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
    [Crossref]
  7. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  8. W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
    [Crossref] [PubMed]
  9. T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
    [Crossref]
  10. L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
    [Crossref] [PubMed]
  11. F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
    [Crossref] [PubMed]
  12. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [Crossref] [PubMed]
  13. M. Xu, F. Shi, L. Zhou, Y. Dai, X. Peng, and W. Liao, “Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica,” Opt. Express 25(23), 29260–29271 (2017).
    [Crossref]
  14. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  15. X. Gao, G. Feng, J. Han, and L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20(20), 22095–22101 (2012).
    [Crossref] [PubMed]
  16. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [Crossref] [PubMed]
  17. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]
  18. J. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. 29(17), 4554–4558 (1994).
    [Crossref]
  19. D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
    [Crossref]
  20. D. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73(1-3), 51–77 (1985).
    [Crossref]
  21. L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
    [Crossref] [PubMed]
  22. Z. Wang, Y. Wu, Y. Dai, and S. Li, “Subsurface damage distribution in the lapping process,” Appl. Opt. 47(10), 1417–1426 (2008).
    [Crossref] [PubMed]
  23. T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
    [Crossref]
  24. Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
    [Crossref]
  25. Y. Tian, F. Shi, Y. Dai, X. Peng, and Y. Zhong, “Laser absorption precursor research: microstructures in the subsurface of mono-crystalline silicon substrate,” Appl. Opt. 56(30), 8507–8512 (2017).
    [Crossref] [PubMed]
  26. J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
    [Crossref] [PubMed]

2018 (1)

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (3)

2015 (1)

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

2014 (2)

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

2013 (1)

2012 (1)

2010 (1)

2009 (1)

2008 (1)

2006 (2)

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

2005 (2)

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

2004 (1)

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

2001 (1)

2000 (1)

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[Crossref] [PubMed]

1996 (1)

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

1994 (1)

J. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. 29(17), 4554–4558 (1994).
[Crossref]

1985 (1)

D. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73(1-3), 51–77 (1985).
[Crossref]

Ambard, C.

Baxamusa, S.

Bercegol, H.

Birolleau, J. C.

Borden, M.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Bude, J.

Campbell, J.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Carr, W.

Chase, L. L.

Chen, X.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

Cormont, P.

Cross, D.

Dai, Y.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Deng, Y.

Desjardin, R.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Destribats, J.

Dylla-Spears, R.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Feit, M.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Feng, G.

Fengrui, W.

Ferriera, L.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Gao, X.

Geng, F.

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

Génin, F. Y.

Griscom, D.

D. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73(1-3), 51–77 (1985).
[Crossref]

Gu, S.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Guo, Y.

Hackel, R.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Han, J.

Haupt, D. L.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Hawley-Fedder, R.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Hirano, M.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[Crossref] [PubMed]

Hongjie, L.

Hosono, H.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[Crossref] [PubMed]

Huang, H.

Huang, J.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Hutcheon, I. D.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Jiang, X.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Jin, H.

Kinney, J. H.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Kuo, P.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Laixi, S.

Lamaignere, L.

Laurence, T.

Legros, P.

Li, H.

Li, Q.

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Li, S.

Li, Y.

Liao, D.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

Liao, W.

Lindsey, E. F.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Liu, H.

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Liu, Z.

Lu, Y.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Miller, P.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Monticelli, M.

Neauport, J.

Nie, X.

Peng, X.

Pilon, F.

Pistor, T. V.

Rajan, K.

J. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. 29(17), 4554–4558 (1994).
[Crossref]

Riley, M.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Runkel, M.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Salleo, A.

Shao, T.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

Shen, N.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

Shi, F.

Shi, Z.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

Skuja, L.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[Crossref] [PubMed]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Steele, W.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

Stolz, C.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Sui, T.

Sun, D.

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

Sun, L.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Suratwala, T.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in International Optical Design Conference and Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2010), paper OWA1.

Tang, C.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

Tian, Y.

Trogolo, J.

J. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. 29(17), 4554–4558 (1994).
[Crossref]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

Wang, F.

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, Z.

Wanguo, Z.

Whitman, P.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Wong, J.

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Wong, L.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

Wu, W.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Wu, Y.

Wu, Z.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Xia, H.

Xiaodong, J.

Xiaoyan, Z.

Xie, R.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

Xie, X.

Xin, Y.

Xinda, Z.

Xu, M.

Xu, Q.

Yang, L.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Yang, W.

Ye, X.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Yu, J.

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Zhai, L.

Zhan, S.

Zhang, Z.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

Zheng, W.

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Zhong, Y.

Zhou, L.

Appl. Opt. (2)

Ceram. Int. (1)

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4470–4483 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry & formation of the Bielby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

J. Mater. Sci. (1)

J. Trogolo and K. Rajan, “Near surface modification of silica structure induced by chemical/mechanical polishing,” J. Mater. Sci. 29(17), 4554–4558 (1994).
[Crossref]

J. Non-Cryst. Solids (3)

J. Wong, L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence UV laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

D. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73(1-3), 51–77 (1985).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding offused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Materials (Basel) (1)

L. Sun, T. Shao, Z. Shi, J. Huang, X. Ye, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Ultraviolet laser damage dependence on contamination concentration in fused silica optics during reactive ion etching process,” Materials (Basel) 11(4), 577 (2018).
[Crossref] [PubMed]

Opt. Express (10)

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

M. Xu, F. Shi, L. Zhou, Y. Dai, X. Peng, and W. Liao, “Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica,” Opt. Express 25(23), 29260–29271 (2017).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

X. Gao, G. Feng, J. Han, and L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20(20), 22095–22101 (2012).
[Crossref] [PubMed]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
[Crossref] [PubMed]

W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
[Crossref] [PubMed]

Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang, and Y. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
[Crossref] [PubMed]

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[Crossref] [PubMed]

Proc. SPIE (3)

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

P. Miller, T. Suratwala, L. Wong, M. Feit, J. Menapace, P. Davis, and R. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[Crossref]

J. Campbell, R. Hawley-Fedder, C. Stolz, J. Menapace, M. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: An overview,” Proc. SPIE 5341, 84–101 (2004).
[Crossref]

Sci. Rep. (1)

J. Huang, F. Wang, H. Liu, F. Geng, X. Jiang, L. Sun, X. Ye, Q. Li, W. Wu, W. Zheng, and D. Sun, “Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics,” Sci. Rep. 7(1), 16239 (2017).
[Crossref] [PubMed]

Other (1)

T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in International Optical Design Conference and Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2010), paper OWA1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Measurement results of trench profile with the assistance of IBE.
Fig. 2
Fig. 2 Cross-sectional HRTEM image showing near surface at 0nm of fused silica: (a) fused silica sample after ion milling; (b) the Beilby layer formed in Zone 1 during CMP; (c) the TEM image of fused silica matrix in Zone 2.
Fig. 3
Fig. 3 EDS-mapping image showing the Beilby layer after CMP.
Fig. 4
Fig. 4 Cross-sectional HRTEM image showing near surface at 250nm depth of fused silica: (a) fused silica sample after ion milling; (b) and (c) No Beilby layer can be observed in Zone 1 and Zone 2, damage-free machining is obtained by IBE.
Fig. 5
Fig. 5 Surface morphologies in trench at different depths.
Fig. 6
Fig. 6 Fluorescence spectra analysis in trench at different depth regions.
Fig. 7
Fig. 7 The relationship between subsurface nanoparticles density and the depth from sample surface. The density drops exponentially with the increase in depth.
Fig. 8
Fig. 8 The relationships between peak fluorescence (FL) intensities of ODC and NBOHC and the depth from sample surface. All the peak fluorescence intensities drop linearly with the increase in depth.
Fig. 9
Fig. 9 A hypothesis for defect layer model after CMP of fused silica.
Fig. 10
Fig. 10 2D photothermal absorption distribution in trench at different depth regions.
Fig. 11
Fig. 11 Photothermal absorption analysis in trench at different depth regions.

Tables (2)

Tables Icon

Table 1 Parameters of IBE

Tables Icon

Table 2 Parameters of Photothermal absorption analysis

Metrics