Abstract

To improve the positioning capabilities of a chromatic confocal displacement measurement system, we introduce a super-resolving pupil filtering element (referred to as spatial-bandpass-filter), an X-shaped fiber-coupler, and a modified peak-extraction algorithm. The spatial-bandpass-filer decreases the spherical aberration of conventional refractive lenses and transmission loss, without changing the dispersion range. The new optical design minimizes the effect of light-source-variation as well as reflectance-variation of the sample surface against the wavelength by adding a reference arm with an X-shaped fiber-coupler and normalization algorithm. This enables rapid re-purposing to obtain data for crosstalk, reference and measurement signals. A prototype setup was built and the experimental results show that the new chromatic dispersion system can reach a position stability of ± 0.36 μm using a commercial cost-effective white-light source. It reaches an axial displacement resolution of up to 1 μm and a peak-fit error below ± 0.2% for a range of 1.05 mm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution confocal detection of nanometric displacement by use of a 2 × 1 optical fiber coupler

Joon Ho Bae, Ki Hyun Kim, Mun Heon Hong, Chang Hun Gim, and Wonho Jhe
Opt. Lett. 25(23) 1696-1698 (2000)

Chromatic confocal matrix sensor with actuated pinhole arrays

Matthias Hillenbrand, Robert Weiss, Csaba Endrödy, Adrian Grewe, Martin Hoffmann, and Stefan Sinzinger
Appl. Opt. 54(15) 4927-4936 (2015)

Confocal laser displacement sensor using a micro-machined varifocal mirror

Kenta Nakazawa, Takashi Sasaki, Hiromasa Furuta, Jiro Kamiya, Hideki Sasaki, Toshikazu Kamiya, and Kazuhiro Hane
Appl. Opt. 56(24) 6911-6916 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).
  2. CLMG series chromatic confocal series, “Point sensors,” http://www.stil-sensors.com .
  3. S. W. Hell, E. H. Stelzer, S. Lindek, and C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett. 19(3), 222–224 (1994).
    [Crossref] [PubMed]
  4. R. Esposito, G. Scherillo, M. Pannico, P. Musto, S. De Nicola, and G. Mensitieri, “Depth profiles in confocal optical microscopy: a simulation approach based on the second Rayleigh-Sommerfeld diffraction integral,” Opt. Express 24(12), 12565–12576 (2016).
    [Crossref] [PubMed]
  5. A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
    [Crossref] [PubMed]
  6. R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
    [Crossref] [PubMed]
  7. C. Chen, J. Wang, X. Liu, W. Lu, H. Zhu, and X. J. Jiang, “Influence of sample surface height for evaluation of peak extraction algorithms in confocal microscopy,” Appl. Opt. 57(22), 6516–6526 (2018).
    [Crossref] [PubMed]
  8. J. Yang, L. Qiu, W. Zhao, R. Shao, and Z. Li, “Measuring the lens focal length by laser reflection-confocal technology,” Appl. Opt. 52(16), 3812–3817 (2013).
    [Crossref] [PubMed]
  9. T. Kim, S. H. Kim, D. Do, H. Yoo, and D. Gweon, “Chromatic confocal microscopy with a novel wavelength detection method using transmittance,” Opt. Express 21(5), 6286–6294 (2013).
    [Crossref] [PubMed]
  10. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
    [Crossref]
  11. A. Darafon, A. Warkentin, and R. Bauer, “Characterization of grinding wheel topography using a white chromatic sensor,” Int. J. Mach. Tools Manuf. 70(7), 22–31 (2013).
    [Crossref]
  12. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
    [Crossref] [PubMed]
  13. V. Rishikesan and G. L. Samuel, “Evaluation of surface profile parameters of a machined surface using confocal displacement sensor,” Procedia Mater. Sci. 5, 1385–1391 (2014).
    [Crossref]
  14. X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
    [Crossref]
  15. J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).
  16. C. Olsovsky, R. Shelton, O. Carrasco-Zevallos, B. E. Applegate, and K. C. Maitland, “Chromatic confocal microscopy for multi-depth imaging of epithelial tissue,” Biomed. Opt. Express 4(5), 732–740 (2013).
    [Crossref] [PubMed]
  17. S. L. Dobson, P. C. Sun, and Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36(20), 4744–4748 (1997).
    [Crossref] [PubMed]
  18. J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
    [Crossref]
  19. D. Fleischle, W. Lyda, F. Schaal, and W. Osten, “Chromatic confocal sensor for in-process measurement during lathing,” presented at the 10th International Symposium of Measurement Technology and Intelligent Instruments, Korea, 29 June–2 July 2011.
  20. M. Rayer and D. Mansfield, “Chromatic confocal microscopy using staircase diffractive surface,” Appl. Opt. 53(23), 5123–5130 (2014).
    [Crossref] [PubMed]
  21. U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
    [Crossref]
  22. M. Yun, L. Liu, J. Sun, and D. Liu, “Three-dimensional superresolution by three-zone complex pupil filters,” J. Opt. Soc. Am. A 22(2), 272–277 (2005).
    [Crossref] [PubMed]
  23. T. G. Jabbour and S. M. Kuebler, “Design of axially super-resolving phase pupil filter for high-numerical aperture applications,” Proc. SPIE 6883, 3101–3109 (2008).
    [Crossref]
  24. G. T. D. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3), 426–438 (1952).
    [Crossref]
  25. M. Yuki, F. Naoki, and S. Takahiro, “Chromatic confocal measurement apparatus,” European patent, EP 2708934B1 (2017).
  26. D. Luo, C. Kuang, and X. Liu, “Fiber-based chromatic confocal microscope with Gaussian fitting method,” Opt. Laser Technol. 44(4), 788–793 (2012).
    [Crossref]
  27. M. Born and E. Wolf, Principle of optics (Pergamon, 1999).
  28. C. W. Mccutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54(2), 240–244 (1964).
    [Crossref]

2018 (1)

2017 (1)

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

2016 (1)

2015 (1)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

2014 (2)

V. Rishikesan and G. L. Samuel, “Evaluation of surface profile parameters of a machined surface using confocal displacement sensor,” Procedia Mater. Sci. 5, 1385–1391 (2014).
[Crossref]

M. Rayer and D. Mansfield, “Chromatic confocal microscopy using staircase diffractive surface,” Appl. Opt. 53(23), 5123–5130 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (2)

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

D. Luo, C. Kuang, and X. Liu, “Fiber-based chromatic confocal microscope with Gaussian fitting method,” Opt. Laser Technol. 44(4), 788–793 (2012).
[Crossref]

2008 (1)

T. G. Jabbour and S. M. Kuebler, “Design of axially super-resolving phase pupil filter for high-numerical aperture applications,” Proc. SPIE 6883, 3101–3109 (2008).
[Crossref]

2005 (1)

2004 (2)

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[Crossref] [PubMed]

2003 (2)

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
[Crossref] [PubMed]

1997 (1)

1994 (1)

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

1964 (1)

1952 (1)

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3), 426–438 (1952).
[Crossref]

Ahmad, S. S.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Angelis, C. D.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Applegate, B. E.

Archid, R.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Bauer, R.

A. Darafon, A. Warkentin, and R. Bauer, “Characterization of grinding wheel topography using a white chromatic sensor,” Int. J. Mach. Tools Manuf. 70(7), 22–31 (2013).
[Crossref]

Bettoni, S.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Bosse, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Carrasco-Zevallos, O.

Chen, C.

Chen, Y. L.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Cremer, C.

Darafon, A.

A. Darafon, A. Warkentin, and R. Bauer, “Characterization of grinding wheel topography using a white chromatic sensor,” Int. J. Mach. Tools Manuf. 70(7), 22–31 (2013).
[Crossref]

De Nicola, S.

Do, D.

Dobson, S. L.

Esposito, R.

Estler, W. T.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Fainman, Y.

Francia, G. T. D.

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3), 426–438 (1952).
[Crossref]

Gao, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Garzón, J. R.

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Gharbi, T.

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Gweon, D.

Haitjema, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Hell, S. W.

Jabbour, T. G.

T. G. Jabbour and S. M. Kuebler, “Design of axially super-resolving phase pupil filter for high-numerical aperture applications,” Proc. SPIE 6883, 3101–3109 (2008).
[Crossref]

Jiang, X. J.

Kim, S. H.

Kim, S. W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Kim, T.

Klaus, A. V.

A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
[Crossref] [PubMed]

Knapp, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Kuang, C.

D. Luo, C. Kuang, and X. Liu, “Fiber-based chromatic confocal microscope with Gaussian fitting method,” Opt. Laser Technol. 44(4), 788–793 (2012).
[Crossref]

Kuebler, S. M.

T. G. Jabbour and S. M. Kuebler, “Design of axially super-resolving phase pupil filter for high-numerical aperture applications,” Proc. SPIE 6883, 3101–3109 (2008).
[Crossref]

Kulasekera, V. L.

A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
[Crossref] [PubMed]

Kunzmann, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Lademann, J.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Lange-Asschenfeldt, B.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Li, G.

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Li, P.

Li, Z.

Li, Z. Q.

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Lindek, S.

Liu, D.

Liu, L.

Liu, X.

Liu, Z.

Lu, W.

Lu, X. D.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Luo, D.

D. Luo, C. Kuang, and X. Liu, “Fiber-based chromatic confocal microscope with Gaussian fitting method,” Opt. Laser Technol. 44(4), 788–793 (2012).
[Crossref]

Maitland, K. C.

Manili, G.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Mansfield, D.

Mccutchen, C. W.

Meneses, J.

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Mensitieri, G.

Minoni, U.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Modotto, D.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Musto, P.

Olsovsky, C.

Pannico, M.

Patzelt, A.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Philipp, S.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Plata, A.

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Qiu, L.

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Rayer, M.

Reyes, J. G.

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

Rishikesan, V.

V. Rishikesan and G. L. Samuel, “Evaluation of surface profile parameters of a machined surface using confocal displacement sensor,” Procedia Mater. Sci. 5, 1385–1391 (2014).
[Crossref]

Samuel, G. L.

V. Rishikesan and G. L. Samuel, “Evaluation of surface profile parameters of a machined surface using confocal displacement sensor,” Procedia Mater. Sci. 5, 1385–1391 (2014).
[Crossref]

Schawaroch, V.

A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
[Crossref] [PubMed]

Scherillo, G.

Shao, R.

Shelton, R.

Shi, K.

Stelzer, E. H.

Sterry, W.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Stockfleth, E.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Sun, J.

Sun, P. C.

Sun, T.

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Tribillon, G.

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Tribillon, G. M.

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

Ulrich, M.

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

Varrenti, E.

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Wang, J.

Warkentin, A.

A. Darafon, A. Warkentin, and R. Bauer, “Characterization of grinding wheel topography using a white chromatic sensor,” Int. J. Mach. Tools Manuf. 70(7), 22–31 (2013).
[Crossref]

Weckenmann, A.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Yang, J.

Yin, S.

Yoo, H.

Yun, M.

Zhao, W.

Zhao, X. S.

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Zhu, H.

Zou, X. C.

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (1)

CIRP Ann-Manuf. Technol. (1)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann-Manuf. Technol. 64, 773–796 (2015).

Int. J. Adv. Manuf. Technol. (1)

X. C. Zou, X. S. Zhao, G. Li, Z. Q. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90(5–8), 2163–2172 (2017).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

A. Darafon, A. Warkentin, and R. Bauer, “Characterization of grinding wheel topography using a white chromatic sensor,” Int. J. Mach. Tools Manuf. 70(7), 22–31 (2013).
[Crossref]

J. Biomed. Opt. (1)

R. Archid, A. Patzelt, B. Lange-Asschenfeldt, S. S. Ahmad, M. Ulrich, E. Stockfleth, S. Philipp, W. Sterry, and J. Lademann, “Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin,” J. Biomed. Opt. 17(10), 101511 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

A. V. Klaus, V. L. Kulasekera, and V. Schawaroch, “Three-dimensional visualization of insect morphology using confocal laser scanning microscopy,” J. Microsc. 212(Pt 2), 107–121 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nuovo Cim. (1)

G. T. D. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim. 9(S3), 426–438 (1952).
[Crossref]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49(4), 229–233 (1984).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (2)

D. Luo, C. Kuang, and X. Liu, “Fiber-based chromatic confocal microscope with Gaussian fitting method,” Opt. Laser Technol. 44(4), 788–793 (2012).
[Crossref]

U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto, and C. D. Angelis, “Chromatic confocal setup for displacement measurement using a supercontinuum light source,” Opt. Laser Technol. 49, 91–94 (2013).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

J. G. Reyes, J. Meneses, A. Plata, G. M. Tribillon, and T. Gharbi, “Axial resolution of a chromatic dispersion confocal microscopy,” Proc. SPIE 5622, 766–771 (2004).
[Crossref]

T. G. Jabbour and S. M. Kuebler, “Design of axially super-resolving phase pupil filter for high-numerical aperture applications,” Proc. SPIE 6883, 3101–3109 (2008).
[Crossref]

Procedia Mater. Sci. (1)

V. Rishikesan and G. L. Samuel, “Evaluation of surface profile parameters of a machined surface using confocal displacement sensor,” Procedia Mater. Sci. 5, 1385–1391 (2014).
[Crossref]

Rev. Columb. Fis. (1)

J. R. Garzón, J. Meneses, A. Plata, T. Gharbi, and G. Tribillon, “Chromatic confocal profilometer,” Rev. Columb. Fis. 35(2), 376–379 (2003).

Other (4)

CLMG series chromatic confocal series, “Point sensors,” http://www.stil-sensors.com .

D. Fleischle, W. Lyda, F. Schaal, and W. Osten, “Chromatic confocal sensor for in-process measurement during lathing,” presented at the 10th International Symposium of Measurement Technology and Intelligent Instruments, Korea, 29 June–2 July 2011.

M. Yuki, F. Naoki, and S. Takahiro, “Chromatic confocal measurement apparatus,” European patent, EP 2708934B1 (2017).

M. Born and E. Wolf, Principle of optics (Pergamon, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of chromatic confocal technology.
Fig. 2
Fig. 2 Intensity distribution around the focus spot for different Ra values.
Fig. 3
Fig. 3 Schematic of a chromatic confocal measurement system: light source (LS); achromatic lens (AL); colored glass filter (CGF); aperture stop (AS); adjustable iris (AI); chromatic dispersion lens (CDL); measuring mirror (MM); reference mirror (RM); fiber coupler (FC).
Fig. 4
Fig. 4 Axial spherical aberrations and design of SBF.
Fig. 5
Fig. 5 Spot diagrams for three wavelengths: (a) without SBF; (b) with SBF.
Fig. 6
Fig. 6 Experimental setup of the chromatic confocal system.
Fig. 7
Fig. 7 The normalized dispersion coefficient and calibration curve.
Fig. 8
Fig. 8 Results of the stability experiment for five fixed positions.
Fig. 9
Fig. 9 Results of the resolution experiments.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

l(λ)= 1 (n(λ)1)(1/ R 1 1/ R 2 ) ,
U(v,u)= 2π b 2 λ 2 sl 1 0 P(ρ) J 0 (vρ)exp(- ju ρ 2 2 )ρdρ v=2πrNA/λ , u=2πz NA 2 /λ
P(ρ)={ 0,0ρ R a 1, R a <ρ1 ,
U(v,0)= 2π b 2 λ 2 sl 1 R a J 0 (vρ)ρdρ = 2π b 2 λ 2 sl [ J 1 (v) v - R a J 1 (v R a ) v ] .
I(v,0)= U 2 (V,0).
U(0,u)= 2π b 2 λ 2 sl 1 R a exp(- ju ρ 2 2 )ρdρ = 2π b 2 j λ 2 slu [exp(- ju R a 2 2 )-exp(- ju 2 )] .
I(0,u)= [ π b 2 (1 R a 2 ) λ 2 sl ] 2 sin c 2 ( u(1 R a 2 ) 4 ).
Δz= 2λ (1 R a 2 ) NA 2 .
{ RA: I R ( λ k )= I 0 ( λ k )+ I N ( λ k )×ψ( λ k ) MA: I M ( λ k )= I 0 ( λ k )+ I N ( λ k )×ψ( λ k )×η( λ k ) .
η( λ k )= I M ( λ k ) I 0 ( λ k ) I R ( λ k ) I 0 ( λ k ) .
η( λ m )=max[η( λ k )].

Metrics