Abstract

Properties of light sources based on amplified spontaneous emission (ASE) are similar to the properties of lasers in many regards. However, even though ASE has been widely studied, its photon statistics have not been settled. There are no reliable theoretical estimates or unambiguous experimental data for the second-order coherence function of photons that characterizes the coherence properties of a light source. Our computer simulation clearly establishes that, independently of pump power, the light produced by ASE is similar to that of a thermal source. This result lays bare the fundamental difference between ASE radiation and laser radiation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Second-order coherence properties of metallic nanolasers

William E. Hayenga, Hipolito Garcia-Gracia, Hossein Hodaei, Christian Reimer, Roberto Morandotti, Patrick LiKamWa, and Mercedeh Khajavikhan
Optica 3(11) 1187-1193 (2016)

Quantum theory of amplified spontaneous emission: scaling properties

John C. Garrison, Howard Nathel, and Raymond Y. Chiao
J. Opt. Soc. Am. B 5(7) 1528-1539 (1988)

Amplified spontaneous emission and recoverable photodegradation in polymer doped with Disperse Orange 11

Brent F. Howell and Mark G. Kuzyk
J. Opt. Soc. Am. B 19(8) 1790-1793 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
    [Crossref] [PubMed]
  2. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
    [Crossref] [PubMed]
  3. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
    [Crossref] [PubMed]
  4. A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
    [Crossref] [PubMed]
  5. A. E. Siegman, Lasers (University Science Books, 1986).
  6. U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
    [Crossref]
  7. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
    [Crossref] [PubMed]
  8. H. Haken, Laser light dynamics (North-Holland Physics, 1985).
  9. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University, 1997).
  10. S. A. Blumenstein, “Classical ghost imaging with opto-electronic light sources: novel and highly incoherent concepts,” (Technische Universität, Darmstadt, 2017).
  11. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  12. D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
    [Crossref]
  13. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
    [Crossref]
  14. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
    [Crossref] [PubMed]
  15. M. Blazek, S. Hartmann, A. Molitor, and W. Elsaesser, “Unifying intensity noise and second-order coherence properties of amplified spontaneous emission sources,” Opt. Lett. 36(17), 3455–3457 (2011).
    [Crossref] [PubMed]
  16. M. Blazek and W. Elsäßer, “Coherent and thermal light: Tunable hybrid states with second-order coherence without first-order coherence,” Phys. Rev. A 84(6), 063840 (2011).
    [Crossref]
  17. S. Hartmann, A. Molitor, M. Blazek, and W. Elsässer, “Tailored first- and second-order coherence properties of quantum dot superluminescent diodes via optical feedback,” Opt. Lett. 38(8), 1334–1336 (2013).
    [Crossref] [PubMed]
  18. S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
    [Crossref] [PubMed]
  19. H. Carmichael, An open systems approach to quantum optics (Springer-Verlag, 1991).
  20. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
    [Crossref]
  21. P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations (Springer-Verlag, 1992).
  22. A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
    [Crossref] [PubMed]
  23. P. Gartner, “Two-level laser: Analytical results and the laser transition,” Phys. Rev. A 84(5), 053804 (2011).
    [Crossref]
  24. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).
  25. A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
    [Crossref]
  26. A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
    [Crossref]
  27. A. Kowalevicz, T. Ko, I. Hartl, J. Fujimoto, M. Pollnau, and R. Salathé, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10(7), 349–353 (2002).
    [Crossref] [PubMed]
  28. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  29. T. Ko, D. Adler, J. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
    [Crossref] [PubMed]
  30. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
    [Crossref]
  31. G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” in Proc. SPIE 4648, Test and Measurement Applications of Optoelectronic Devices(SPIE, 2002), pp. 125–139.
  32. H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
    [Crossref]
  33. V. S. Letokhov, “Laser action in stellar atmospheres,” IEEE J. Quantum Electron. 8(6), 615 (1972).
    [Crossref]
  34. V. S. Letokhov and S. Johansson, Astrophysical Lasers (Oxford University, 2009).
  35. M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
    [Crossref]
  36. M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
    [Crossref] [PubMed]
  37. N. N. Lavrinovich and V. S. Letokhov, “The possibility of the laser effect in stellar atmospheres,” Sov. Phys. JETP 40(5), 800–805 (1975).
  38. S. Johansson and V. S. Letokhov, “Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma,” Phys. Rev. Lett. 90(1), 011101 (2003).
    [Crossref] [PubMed]
  39. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
    [Crossref]
  40. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
    [Crossref] [PubMed]
  41. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref] [PubMed]
  42. G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
    [Crossref]
  43. X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34(5), 695–697 (2009).
    [Crossref] [PubMed]
  44. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
    [Crossref] [PubMed]

2017 (2)

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

2015 (3)

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

2014 (3)

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

2013 (1)

2012 (2)

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

2011 (3)

P. Gartner, “Two-level laser: Analytical results and the laser transition,” Phys. Rev. A 84(5), 053804 (2011).
[Crossref]

M. Blazek, S. Hartmann, A. Molitor, and W. Elsaesser, “Unifying intensity noise and second-order coherence properties of amplified spontaneous emission sources,” Opt. Lett. 36(17), 3455–3457 (2011).
[Crossref] [PubMed]

M. Blazek and W. Elsäßer, “Coherent and thermal light: Tunable hybrid states with second-order coherence without first-order coherence,” Phys. Rev. A 84(6), 063840 (2011).
[Crossref]

2010 (1)

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

2009 (3)

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

X.-H. Chen, Q. Liu, K.-H. Luo, and L.-A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34(5), 695–697 (2009).
[Crossref] [PubMed]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

2005 (3)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

2004 (2)

G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
[Crossref]

T. Ko, D. Adler, J. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref] [PubMed]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

S. Johansson and V. S. Letokhov, “Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma,” Phys. Rev. Lett. 90(1), 011101 (2003).
[Crossref] [PubMed]

2002 (1)

1988 (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

1981 (1)

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

1976 (1)

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

1975 (2)

N. N. Lavrinovich and V. S. Letokhov, “The possibility of the laser effect in stellar atmospheres,” Sov. Phys. JETP 40(5), 800–805 (1975).

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

1972 (1)

V. S. Letokhov, “Laser action in stellar atmospheres,” IEEE J. Quantum Electron. 8(6), 615 (1972).
[Crossref]

1965 (1)

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Adler, D.

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Andrianov, E. S.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

Atatüre, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Betz, M. A.

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

Blazek, M.

Bodnarchuk, M. I.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Boitier, F.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Buhl, D.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Chen, X. H.

Chen, X.-H.

Chin, G.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

De Luca, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Deming, D.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Deschler, F.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Dieter, N. H.

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Ding, Q.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Dorofeenko, A. V.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Elsaesser, W.

Elsäßer, W.

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Elsässer, W.

Elsäßer, W.

M. Blazek and W. Elsäßer, “Coherent and thermal light: Tunable hybrid states with second-order coherence without first-order coherence,” Phys. Rev. A 84(6), 063840 (2011).
[Crossref]

Espenak, F.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Fabre, C.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Ferri, F.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Fiebig, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Friend, R. H.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Fu, Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Fujimoto, J.

Ganiel, U.

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

Gartner, P.

P. Gartner, “Two-level laser: Analytical results and the laser transition,” Phys. Rev. A 84(5), 053804 (2011).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Gatti, A.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Godard, A.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Gong, Z.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Grätzel, M.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Gustafsson, M. V.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Hamm, J. M.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Hardy, A.

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

Hartl, I.

Hartmann, S.

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Heiss, W.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Hess, O.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Higler, R.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Humer, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Hüttner, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Jarausch, D. D.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Jin, S.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Johansson, S.

S. Johansson and V. S. Letokhov, “Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma,” Phys. Rev. Lett. 90(1), 011101 (2003).
[Crossref] [PubMed]

Johnson, M. A.

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Klintberg, L. E.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Ko, T.

Kostiuk, T.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Kovalenko, M. V.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Kowalevicz, A.

Krieg, F.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lavrinovich, N. N.

N. N. Lavrinovich and V. S. Letokhov, “The possibility of the laser effect in stellar atmospheres,” Sov. Phys. JETP 40(5), 800–805 (1975).

Leijtens, T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Letokhov, V. S.

S. Johansson and V. S. Letokhov, “Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma,” Phys. Rev. Lett. 90(1), 011101 (2003).
[Crossref] [PubMed]

N. N. Lavrinovich and V. S. Letokhov, “The possibility of the laser effect in stellar atmospheres,” Sov. Phys. JETP 40(5), 800–805 (1975).

V. S. Letokhov, “Laser action in stellar atmospheres,” IEEE J. Quantum Electron. 8(6), 615 (1972).
[Crossref]

Lim, S. S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Lisyansky, A. A.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Liu, Q.

Liu, X.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Lugiato, L. A.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Lum, W. T.

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Luo, K.-H.

Magatti, D.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

Mamedov, D.

Mathews, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

McLaren, R. A.

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

Meng, F.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Mhaisalkar, S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Molitor, A.

Mumma, M. J.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Nechepurenko, I. A.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

Nedelcu, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Neumann, G.

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

Nurmikko, A.

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

Pathak, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Phillips, R. T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Pollnau, M.

Price, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Prokhorov, V.

Protesescu, L.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Pukhov, A. A.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Pusch, A.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Rosencher, E.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

Sabba, D.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Salathé, R.

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
[Crossref]

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Shidlovski, V.

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
[Crossref]

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Snaith, H. J.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Stranks, S. D.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Sum, T. C.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Sutton, E. C.

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

Townes, C. H.

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

Treves, D.

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

Trinh, M. T.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Tsakmakidis, K. L.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
[Crossref]

Vinogradov, A. P.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Weaver, H.

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Williams, D. R. W.

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Wu, L. A.

Wu, L.-A.

Wu, X.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Wuestner, S.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Xing, G.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Yakubovich, S.

Yakunin, S.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Yantara, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Zhai, Y. H.

Zhang, D.

Zhu, H.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Zhu, X. Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

Zipoy, D.

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Zyablovsky, A. A.

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

ACS Nano (1)

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Astrophys. J. (1)

M. A. Johnson, M. A. Betz, R. A. McLaren, E. C. Sutton, and C. H. Townes, “Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus,” Astrophys. J. 208, L145–L148 (1976).
[Crossref]

IEEE J. Quantum Electron. (3)

V. S. Letokhov, “Laser action in stellar atmospheres,” IEEE J. Quantum Electron. 8(6), 615 (1972).
[Crossref]

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

U. Ganiel, A. Hardy, G. Neumann, and D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. 11(11), 881–892 (1975).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photonics Technol. Lett. 22(14), 1057–1059 (2010).
[Crossref] [PubMed]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5–6), 739–760 (2006).
[Crossref]

J. Phys. Chem. Lett. (1)

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5(8), 1421–1426 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6(1), 8056 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref] [PubMed]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Nurmikko, “What future for quantum dot-based light emitters?” Nat. Nanotechnol. 10(12), 1001–1004 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Nat. Phys. (2)

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (1)

H. Weaver, D. R. W. Williams, N. H. Dieter, and W. T. Lum, “Observations of a strong unidentified microwave line and of emission from the OH molecule,” Nature 208(5005), 29–31 (1965).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (3)

G. Scarcelli, A. Valencia, and Y. Shih, “Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime,” Phys. Rev. A 70(5), 051802 (2004).
[Crossref]

M. Blazek and W. Elsäßer, “Coherent and thermal light: Tunable hybrid states with second-order coherence without first-order coherence,” Phys. Rev. A 84(6), 063840 (2011).
[Crossref]

P. Gartner, “Two-level laser: Analytical results and the laser transition,” Phys. Rev. A 84(5), 053804 (2011).
[Crossref]

Phys. Rev. B (1)

A. A. Zyablovsky, I. A. Nechepurenko, E. S. Andrianov, A. V. Dorofeenko, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Optimum gain for plasmonic distributed feedback lasers,” Phys. Rev. B 95(20), 205417 (2017).
[Crossref]

Phys. Rev. Lett. (3)

S. Johansson and V. S. Letokhov, “Radiative cycle with stimulated emission from atoms and ions in an astrophysical plasma,” Phys. Rev. Lett. 90(1), 011101 (2003).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref] [PubMed]

Phys. Uspekhi (1)

A. V. Dorofeenko, A. A. Zyablovsky, A. A. Pukhov, A. A. Lisyansky, and A. P. Vinogradov, “Light propagation in composite materials with gain layers,” Phys. Uspekhi 55(11), 1080–1097 (2012).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Sci. Rep. (1)

S. Hartmann and W. Elsäßer, “A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging,” Sci. Rep. 7(1), 41866 (2017).
[Crossref] [PubMed]

Science (1)

M. J. Mumma, D. Buhl, G. Chin, D. Deming, F. Espenak, T. Kostiuk, and D. Zipoy, “Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars: a natural laser,” Science 212(4490), 45–49 (1981).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

N. N. Lavrinovich and V. S. Letokhov, “The possibility of the laser effect in stellar atmospheres,” Sov. Phys. JETP 40(5), 800–805 (1975).

Other (9)

V. S. Letokhov and S. Johansson, Astrophysical Lasers (Oxford University, 2009).

G. A. Alphonse, “Design of high-power superluminescent diodes with low spectral modulation,” in Proc. SPIE 4648, Test and Measurement Applications of Optoelectronic Devices(SPIE, 2002), pp. 125–139.

L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, 1980).

P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations (Springer-Verlag, 1992).

H. Carmichael, An open systems approach to quantum optics (Springer-Verlag, 1991).

A. E. Siegman, Lasers (University Science Books, 1986).

H. Haken, Laser light dynamics (North-Holland Physics, 1985).

M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University, 1997).

S. A. Blumenstein, “Classical ghost imaging with opto-electronic light sources: novel and highly incoherent concepts,” (Technische Universität, Darmstadt, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The sketch of the ASE source based on a single-mode waveguide. The active medium in the central region of the waveguide (shaded by red) with the length L is pumped by an external source; the active medium outside of this region is not pumped.
Fig. 2
Fig. 2 The intensity of the EM field at the boundary of the active medium (the blue line) and g (2) ( ω TLS ,0) (the red line). The left vertical dashed line shows the compensation threshold, at which pumping compensates for losses in the active medium. The right vertical dashed line represents the pump rate, at which the system transitions to the nonlinear regime due to substantial saturation of the active medium. In this regime, the output power linearly depends on the pump power [5]. The shaded area shows the transitional region in which an increase in the pump rate results in an exponential increase in the radiation intensity.
Fig. 3
Fig. 3 Spectra, n( ω ), normalized by its maximum value, and g (2) (ω,0) of an ASE source for the pump rates below (a), (b) and above (c), (d) the compensation threshold. In Figs. (a) and (b), the pump rate γ p is equal to γ D , and in Figs. (c) and (d), it is equal to 20 γ D . Dashed red curves show the absorption line of the unpumped medium. The values of g (2) (ω,0) are found by using Eq. (27).
Fig. 4
Fig. 4 Red and black curves represent the coherence function g (2) (ω,0) for the dominant modes shown in Fig. 5(c). The blue curve is the generation curve of the laser. The curves are obtained by solving the Maxwell-Bloch equations with noise. The left vertical dashed line shows the lasing threshold given by the Maxwell-Bloch equations without noise. The right vertical dashed line corresponds to the pump rate, for which g (2) (ω,0)1 of the modes becomes inversely-proportional to the average number of photons. Grey shading marks the transitional regime of the laser. The parameters of the active structure are the same as for the ASE system discussed above. The amplitude reflectance of the mirrors is 0.8.
Fig. 5
Fig. 5 Normalized spectra and g (2) (ω,0) of laser emission for pump rates γ p = γ D (a), (b) (below the lasing threshold) and γ p =20 γ D (c), (d) (above the laser threshold).
Fig. 6
Fig. 6 (a) The dependence of ( g (2) ( ω TLS ,0 )the red line) and the spectrum half-width at the half-height Δω (the blue line) on the pump rate for the mirrorless system with L=700 λ TLS and G=673c m 1 ; the dashed black line denotes the lasing threshold derived from linear analysis, γ p =8.66 γ D ; the threshold value of the population inversion is D th =0.793. (b) The normalized spectrum of the system at γ p =800 γ D (the black solid line) and the spectrum of the atom (the red dashed line).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

H ^ = n ω n a ^ n a ^ n + j ω TLS σ ^ j σ ^ j + n,j Ω nj ( a ^ n σ ^ j + a ^ n σ ^ j ) + H ^ R + H ^ SR ,
H ^ R = n H ^ Ra ( n ) + j H ^ Rσ ( j ) + j H ^ RPump ( j ) ,
H ^ Ra ( n ) = m ω nm b b ^ nm b ^ nm
H ^ Rσ ( j ) = m ω jm c c ^ jm c ^ jm
H ^ RPump ( j ) = m ω jm s s ^ jm s ^ jm ,
H SR = n H ^ SRa (n) + j H ^ SRdeph ( j ) + j H ^ SRD ( j ) + j H ^ SRPump ( j ) ,
H ^ SRa (n) = m ν mn ( a ^ n b ^ nm + a ^ n b ^ nm )
H ^ SRdeph ( j ) = m κ jm ( c ^ jm + c ^ jm ) σ ^ j σ ^ j
H ^ SRD ( j ) = m β jm ( c ^ jn σ ^ j + c ^ jn σ ^ j )
H ^ SRPump ( j ) = m η jm ( σ ^ j s ^ jm + σ ^ j s ^ jm )
d dt a ^ n =( γ a /2i Δ n ) a ^ n i j Ω nj σ ^ j + F ^ an ,
d dt a ^ n =( γ a /2+i Δ n ) a ^ n +i j Ω nj σ ^ j + F ^ an ,
d dt σ ^ j = σ ^ j ( γ p + γ D + γ deph )/2+i n Ω nj a ^ n D ^ j + F ^ σj ,
d dt σ ^ j = σ ^ j ( γ p + γ D + γ deph )/2i n Ω nj a ^ n D ^ j + F ^ σj ,
d dt D ^ j = γ p ( D ^ j 1 ) γ D ( D ^ j +1 )+2i n Ω nj ( a ^ n σ ^ j a ^ n σ ^ j ) + F ^ Dj ,
d dt D ^ j =( γ p + γ D )( D ^ j D 0 )+2i n Ω nj ( a ^ n σ ^ j a ^ n σ ^ j ) + F ^ Dj ,
F ^ i ( t ) F ^ j ( t ) ~ δ ij .
F ^ an ( t ) F ^ am ( t ) =2 γ a n ¯ ( ω n ) δ nm δ( t t ),
F ^ σj ( t ) F ^ σj ( t ) =i σ ^ j k a ^ k Ω kj δ( t t ),
F ^ σj ( t ) F ^ σj ( t ) =i k σ ^ j a ^ k Ω kj δ( t t ),
F ^ σj ( t ) F ^ σj ( t ) = 1 2 [ γ p + γ ph ( 1+ D ^ j ) ]δ( t t ),
F ^ Dj ( t ) F ^ Dj ( t ) =[ ( γ D + γ p )( D 0 D ^ j )+2 k Ω kj ( a ^ k σ ^ j a ^ k σ ^ j ) ]δ( t t ),
d a n dt =( γ a /2i Δ n ) a n i k Ω nk N c σ k cell ,
d a n cc dt =( γ a /2+i Δ n ) a n cc +i k Ω nk N c σ k cellcc ,
d σ k cell dt = σ k cell ( γ p + γ D + γ deph )/2+i n Ω nk a n D k cell + F k σcell ,
d σ k cellcc dt = σ k cellcc ( γ p + γ D + γ deph )/2i n Ω nk a n cc D k cell + F k σcellcc ,
d D k cell dt =( γ p + γ D )( D k cell D 0 )+2i n Ω nk ( a n cc σ k cell a n σ k cellcc ) + F k Dcell .
g (2) ( ω n ,τ )= a ^ n ( t ) a ^ n ( t+τ ) a ^ n ( t+τ ) a ^ n ( t ) a ^ n ( t+τ ) a ^ n ( t+τ ) a ^ n ( t ) a ^ n ( t ) .
| ε gain (ω) 1 ε gain (ω) +1 |exp( GDL/2 )=1,

Metrics