Abstract

We present a theoretical study of terahertz (THz) radiation induced by surface plasmon polaritons (SPPs) on a graphene layer under modulation by a surface acoustic wave (SAW). In our gedanken experiment, SPPs are excited by an electron beam moving on a graphene layer situated on a piezoelectric MoS2 flake. Under modulation by the SAW field, charge carriers are periodically distributed over the MoS2 flake, and this causes periodically distributed permittivity. The periodic permittivity structure of the MoS2 flake folds the SPP dispersion curve back into the center of the first Brillouin zone, in a manner analogous to a crystal, leading to THz radiation emission with conservation of the wavevectors between the SPPs and the electromagnetic waves. Both the frequency and the intensity of the THz radiation are tuned by adjusting the chemical potential of the graphene layer, the MoS2 flake doping density, and the wavelength and period of the external SAW field. A maximum energy conversion efficiency as high as ninety percent was obtained from our model calculations. These results indicate an opportunity to develop highly tunable and integratable THz sources based on graphene devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation

Qing Zhang, Zhou Zhen, Yongfei Yang, Gongwen Gan, Deep Jariwala, and Xudong Cui
Opt. Express 27(13) 18585-18600 (2019)

Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy

Piotr Patoka, Georg Ulrich, Ariana E. Nguyen, Ludwig Bartels, Peter A. Dowben, Volodymyr Turkowski, Talat S. Rahman, Peter Hermann, Bernd Kästner, Arne Hoehl, Gerhard Ulm, and Eckart Rühl
Opt. Express 24(2) 1154-1164 (2016)

Plasmon modes of circular cylindrical double-layer graphene

Tao Zhao, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Sen Gong, Chao Zhang, and Shenggang Liu
Opt. Express 24(18) 20461-20471 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
    [Crossref]
  3. K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
    [Crossref] [PubMed]
  4. H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
    [Crossref] [PubMed]
  5. E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106–E120 (2010).
    [Crossref] [PubMed]
  6. Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490–492 (1989).
    [Crossref]
  7. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
    [Crossref]
  8. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000).
    [Crossref] [PubMed]
  9. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
    [Crossref]
  10. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
    [Crossref] [PubMed]
  11. T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
    [Crossref]
  12. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
    [Crossref]
  13. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205418 (2007).
    [Crossref]
  14. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  15. S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
    [Crossref]
  16. T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
    [Crossref]
  17. M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
    [Crossref]
  18. A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
    [Crossref] [PubMed]
  19. C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
    [Crossref]
  20. A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
    [Crossref]
  21. C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
    [Crossref]
  22. F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
    [Crossref]
  23. M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
    [Crossref] [PubMed]
  24. J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
    [Crossref] [PubMed]
  25. E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
    [Crossref] [PubMed]
  26. A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
    [Crossref] [PubMed]
  27. T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
    [Crossref]
  28. A. V. Chaplik and M. V. Krasheninnikov, “Two-dimensional plasmons (2DP) and acoustic waves in crystals,” Surf. Sci. 98(1-3), 533–552 (1980).
    [Crossref]
  29. X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
    [Crossref]
  30. C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
    [Crossref]
  31. C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
    [Crossref]
  32. M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
    [Crossref] [PubMed]
  33. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
    [Crossref] [PubMed]
  34. R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
    [Crossref]
  35. N. Tzoar and C. Zhang, “High-frequency conductivity of superlattices with electron-phonon coupling,” Phys. Rev. B Condens. Matter 35(14), 7596–7603 (1987).
    [Crossref] [PubMed]
  36. S. M. Sez, Physics of Semiconductor Devices (Wiley, 1981).
  37. D. A. Neamen, Semiconductor Physics and Devices Basic Principles 3rd edn (McGraw-Hill, 2003).
  38. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning Asia Pte Ltd., 1976).
  39. P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
    [Crossref]
  40. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  41. S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
    [Crossref] [PubMed]
  42. O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
    [Crossref] [PubMed]
  43. A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  44. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
    [Crossref] [PubMed]
  45. H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
    [Crossref] [PubMed]
  46. C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
    [Crossref] [PubMed]

2018 (1)

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

2017 (2)

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

2016 (3)

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

2015 (3)

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

2014 (6)

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

2013 (5)

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

2012 (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (2)

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (3)

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106–E120 (2010).
[Crossref] [PubMed]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

2009 (2)

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2007 (2)

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205418 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (3)

H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
[Crossref] [PubMed]

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

2004 (1)

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

2000 (1)

1997 (1)

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

1994 (1)

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

1991 (1)

X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
[Crossref]

1989 (1)

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490–492 (1989).
[Crossref]

1987 (1)

N. Tzoar and C. Zhang, “High-frequency conductivity of superlattices with electron-phonon coupling,” Phys. Rev. B Condens. Matter 35(14), 7596–7603 (1987).
[Crossref] [PubMed]

1986 (1)

A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
[Crossref] [PubMed]

1982 (1)

M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
[Crossref]

1980 (1)

A. V. Chaplik and M. V. Krasheninnikov, “Two-dimensional plasmons (2DP) and acoustic waves in crystals,” Surf. Sci. 98(1-3), 533–552 (1980).
[Crossref]

Abstreiter, G.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Addou, R.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Ala-Laurinaho, J.

Alexander, M.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Alsina, F.

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

Asensio, M. C.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Avila, J.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Bagci, H.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Barbieri, S.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Barroso, D.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Bartels, L.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Batzill, M.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Betz, M.

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

Bichler, M.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

Blankschtein, D.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Bliss, D.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Bödefeld, C.

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

Böhm, G.

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

Boscá, A.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Bühler, D. D.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

Busch, S. F.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Calle, F.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Cantarero, A.

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

Carey, B.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Castro-Camus, E.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Cha, S.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Chaplik, A. V.

A. V. Chaplik and M. V. Krasheninnikov, “Two-dimensional plasmons (2DP) and acoustic waves in crystals,” Surf. Sci. 98(1-3), 533–552 (1980).
[Crossref]

Chen, C.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Chen, X.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Choi, H.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Chrimes, A. F.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Chui, S.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

Cook, A. M.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Cook, D. J.

Das Sarma, S.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205418 (2007).
[Crossref]

Davies, A. G.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Diaz, H. C.

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Dietlein, C.

Döblinger, M.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Duan, X.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Ebbecke, J.

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

Fandan, R.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

Farhat, M.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Fattinger, Ch.

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490–492 (1989).
[Crossref]

Feng, S.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Finley, J. J.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

Förster, F.

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

Fuhrer, M. S.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

García-Cristóbal, A.

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

Geim, A.

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Gellie, P.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gibson, B. C.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Gong, S.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grischkowsky, D.

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490–492 (1989).
[Crossref]

Gronberg, L.

Gronholm, M.

Grossman, E.

Guenneau, S.

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

Guinea, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

Han, D.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

Han, P.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Hebling, J.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

Heigl, M.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Heo, H.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Hochstrasser, R. M.

Hoffmann, M. C.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

Hoskins, M. J.

M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
[Crossref]

Hu, M.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Hu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

Huang, T.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Huang, Y.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Hunsinger, B. J.

M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
[Crossref]

Hwang, E. H.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205418 (2007).
[Crossref]

Hwang, H. Y.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

Isarraraz, M.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Janker, L.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Jin, Z.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Jo, M.-H.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Khanna, S. P.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Kinzel, J. B.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

Kis, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Klee, V.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Koblmüller, G.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

Koch, M.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Kotthaus, J. P.

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
[Crossref] [PubMed]

Krasheninnikov, M. V.

A. V. Chaplik and M. V. Krasheninnikov, “Two-dimensional plasmons (2DP) and acoustic waves in crystals,” Surf. Sci. 98(1-3), 533–552 (1980).
[Crossref]

Krenner, H. J.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

Krügener, K.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Lappalainen, P.

Larkin, J.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Lau, D. W. M.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Leivo, M.

Li, Z.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Linfield, E. H.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Lipsanen, H.

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

Liu, S.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Liu, X.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

Liu, Y.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Lopes, J. M. J.

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

Lu, I.-H.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Luukanen, A.

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Mann, J.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Manquest, C.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Martínez, J.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

Matsui, Y.

X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
[Crossref]

Mi, Z.

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

Michailow, W.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Möller, B.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Morkoc, H.

M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
[Crossref]

Morkötter, S.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Müller, K.

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

Nelson, K. A.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

Neumann, J.

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

Nguyen, A. E.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Novoselov, K.

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Oliveira, M. H.

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

Park, J.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Pedrós, J.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Peres, N.

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Preciado, E.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Rautiainen, A.

Ravaro, M.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Redo-Sanchez, A.

Rezk, A. R.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Riechert, H.

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

Rocke, C.

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

Rosenzweig, J. B.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Rudolph, D.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Ruppert, C.

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

Salehzadeh, O.

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

Santarelli, G.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Santos, P. V.

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

Santosa, P. V.

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

Schiefele, J.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Schülein, F. J. R.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

Schumann, T.

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

Schwerdtfeger, M.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Shih, C.-J.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Shih, I.

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

Shiokawa, S.

X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
[Crossref]

Sim, S.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Sirtori, C.

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

Sols, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

Soltani, A.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Son, Y.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Sopanen, M.

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

Stauber, T.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

Strano, M. S.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Sun, W.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Sun, X.

X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
[Crossref]

Sung, J. H.

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

Tamminen, A.

Tikhoplav, R.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Tochitsky, S. Y.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Toivonen, J.

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tran, N. H.

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

Travish, G.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Tzoar, N.

N. Tzoar and C. Zhang, “High-frequency conductivity of superlattices with electron-phonon coupling,” Phys. Rev. B Condens. Matter 35(14), 7596–7603 (1987).
[Crossref] [PubMed]

Viöl, W.

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

von Son, G.

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Wang, Q. H.

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

Wang, X.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Weimann, G.

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
[Crossref] [PubMed]

Weiß, M.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

Weiss, M.

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

Williams, O. B.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

Wixforth, A.

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
[Crossref] [PubMed]

Wunsch, B.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

Ye, J.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Yeh, K. L.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

Yeo, L. Y.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Yin, A.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Yu, W. J.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

Zhang, C.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

N. Tzoar and C. Zhang, “High-frequency conductivity of superlattices with electron-phonon coupling,” Phys. Rev. B Condens. Matter 35(14), 7596–7603 (1987).
[Crossref] [PubMed]

Zhang, P.

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zhang, X.-C.

H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
[Crossref] [PubMed]

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

Zhang, Y.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Zhao, T.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zheng, C.

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

Zhong, H.

Zhong, R.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

Zhou, H.

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Zi, J.

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

Zimmermann, S.

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

Zrenner, A.

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

ACS Nano (2)

J. B. Kinzel, F. J. R. Schülein, M. Weiß, L. Janker, D. D. Bühler, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “The native material limit of electron and hole mobilities in semiconductor nanowires,” ACS Nano 10(5), 4942–4953 (2016).
[Crossref] [PubMed]

C.-J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, “Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation,” ACS Nano 8(6), 5790–5798 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

C. Ruppert, F. Förster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photonics 1(2), 91–95 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490–492 (1989).
[Crossref]

A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994).
[Crossref]

S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104(20), 201104 (2014).
[Crossref]

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110(23), 231102 (2017).
[Crossref]

M. J. Hoskins, H. Morkoc, and B. J. Hunsinger, “Charge transport by surface acoustic waves in GaAs,” Appl. Phys. Lett. 41(4), 332–334 (1982).
[Crossref]

P. V. Santosa, T. Schumann, M. H. Oliveira, J. M. J. Lopes, and H. Riechert, “Acousto-electric transport in epitaxial monolayer graphene on SiC,” Appl. Phys. Lett. 102(22), 221907 (2013).
[Crossref]

J. Appl. Phys. (1)

X. Sun, S. Shiokawa, and Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69(1), 362–366 (1991).
[Crossref]

J. Phys. D Appl. Phys. (2)

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez, and F. Calle, “Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrate,” J. Phys. D Appl. Phys. 51(20), 204004 (2018).
[Crossref]

T. Huang, P. Han, X. Wang, J. Ye, W. Sun, S. Feng, and Y. Zhang, “Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS2 flake,” J. Phys. D Appl. Phys. 50(11), 114005 (2017).
[Crossref]

Nano Lett. (4)

M. Weiss, J. B. Kinzel, F. J. R. Schülein, M. Heigl, D. Rudolph, S. Morkötter, M. Döblinger, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires,” Nano Lett. 14(5), 2256–2264 (2014).
[Crossref] [PubMed]

A. R. Rezk, B. Carey, A. F. Chrimes, D. W. M. Lau, B. C. Gibson, C. Zheng, M. S. Fuhrer, L. Y. Yeo, and K. Kalantar-Zadeh, “Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2,” Nano Lett. 16(2), 849–855 (2016).
[Crossref] [PubMed]

O. Salehzadeh, N. H. Tran, X. Liu, I. Shih, and Z. Mi, “Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices,” Nano Lett. 14(7), 4125–4130 (2014).
[Crossref] [PubMed]

H. C. Diaz, J. Avila, C. Chen, R. Addou, M. C. Asensio, and M. Batzill, “Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures,” Nano Lett. 15(2), 1135–1140 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, and H. Choi, “1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy,” Nat. Commun. 7(1), 10768 (2016).
[Crossref] [PubMed]

E. Preciado, F. J. R. Schülein, A. E. Nguyen, D. Barroso, M. Isarraraz, G. von Son, I.-H. Lu, W. Michailow, B. Möller, V. Klee, J. Mann, A. Wixforth, L. Bartels, and H. J. Krenner, “Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3.,” Nat. Commun. 6(1), 8593 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat. Nanotechnol. 8(12), 952–958 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5(5), 306–313 (2011).
[Crossref]

New J. Phys. (1)

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

N. Tzoar and C. Zhang, “High-frequency conductivity of superlattices with electron-phonon coupling,” Phys. Rev. B Condens. Matter 35(14), 7596–7603 (1987).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (7)

C. Ruppert, J. Neumann, J. B. Kinzel, H. J. Krenner, A. Wixforth, and M. Betz, “Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 82(8), 081416 (2010).
[Crossref]

A. García-Cristóbal, A. Cantarero, F. Alsina, and P. V. Santos, “Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves,” Phys. Rev. B Condens. Matter Mater. Phys. 69(20), 205301 (2004).
[Crossref]

C. Bödefeld, J. Ebbecke, J. Toivonen, M. Sopanen, H. Lipsanen, and A. Wixforth, “Experimental investigation towards a periodically pumped single-photon source,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 035407 (2006).
[Crossref]

F. J. R. Schülein, K. Müller, M. Bichler, G. Koblmüller, J. J. Finley, A. Wixforth, and H. J. Krenner, “Acoustically regulated carrier injection into a single optically active quantum dot,” Phys. Rev. B Condens. Matter Mater. Phys. 88(8), 085307 (2013).
[Crossref]

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 81(3), 035201 (2010).
[Crossref]

T. Zhan, D. Han, X. Hu, X. Liu, S. Chui, and J. Zi, “Tunable terahertz radiation from graphene induced by moving electrons,” Phys. Rev. B Condens. Matter Mater. Phys. 89(24), 245434 (2014).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 75(20), 205418 (2007).
[Crossref]

Phys. Rev. Lett. (5)

A. Wixforth, J. P. Kotthaus, and G. Weimann, “Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron system,” Phys. Rev. Lett. 56(19), 2104–2106 (1986).
[Crossref] [PubMed]

C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Phys. Rev. Lett. 78(21), 4099–4102 (1997).
[Crossref]

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and H. Bağcı, “Exciting graphene surface plasmon polaritons through light and sound interplay,” Phys. Rev. Lett. 111(23), 237404 (2013).
[Crossref] [PubMed]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111(23), 237405 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Sci. Rep. (1)

K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep. 5(1), 14842 (2015).
[Crossref] [PubMed]

Surf. Sci. (1)

A. V. Chaplik and M. V. Krasheninnikov, “Two-dimensional plasmons (2DP) and acoustic waves in crystals,” Surf. Sci. 98(1-3), 533–552 (1980).
[Crossref]

Other (3)

S. M. Sez, Physics of Semiconductor Devices (Wiley, 1981).

D. A. Neamen, Semiconductor Physics and Devices Basic Principles 3rd edn (McGraw-Hill, 2003).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning Asia Pte Ltd., 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Three-dimensional and (b) side schematic views of a moving electron beam atop a graphene layer on a piezoelectric MoS2 flake under an applied surface acoustic wave (SAW) field. The vacuum layer, the MoS2 flake with the applied SAW field, and the substrate layer are labeled as regions I, II, and III, respectively. The distance between the electron beam and the graphene layer and the thickness of the MoS2 flake are labeled b and d, respectively. (c) Schematic illustration of the electron and hole distributions in the SAW-induced type-II band-edge modulation of the n-doped MoS2 flake.
Fig. 2
Fig. 2 Spatial distributions of (a) electron concentration and (b) relative permittivity induced by dielectric screening of the free electrons of the MoS2 flake under a SAW field with period of 2 ns, wavelength of 2 μm, and amplitude of 8 kV/cm. The distributions of the electron concentration and the permittivity when the doping density N D = 1.0 × 1010 cm−2, 1.5 × 1010 cm−2, and 2.0 × 1010 cm−2 are color coded as solid black, dash-and-dotted red, and dashed blue lines, respectively.
Fig. 3
Fig. 3 Spatial distributions of (a) electron concentration and (b) relative permittivity when modulated using external SAW fields. The donor density of the MoS2 flake N D = 1.2 × 1010 cm−2. The wavelength of the external SAW field was set at 2 μm with amplitudes of 5 kV/cm (black solid lines) and 7 kV/cm (red dash-and-dotted lines); the wavelength was also set at 3 μm with an amplitude of 10 kV/cm (blue dashed lines). The period of the applied SAW field was 2 ns.
Fig. 4
Fig. 4 Dispersion curves of the SPPs (blue solid lines) along with the light line (blue dashed line) and the electron beam, which has a speed of 0.0096c (red dashed line). The crossing point of the electron beam and the SPP curve in the first BZ (highlighted in cyan) is labeled point A.
Fig. 5
Fig. 5 SPP dispersion curves and their crossing points with the electron beam lines as a result of tuning (a) the chemical potential of the graphene layer, (b) the doping density of the MoS2 flake, (c) the SAW field period and (d) the SAW field wavelength. The SPP dispersion curves, the electron beam lines and the light lines are shown as blue solid lines, red dashed lines, and blue dashed lines, respectively. The working regions of the THz radiation are highlighted in green.
Fig. 6
Fig. 6 Frequencies of THz radiation as functions of (a) the wavelength and (b) the period of the applied SAW field. The SAW field period is set at 2.0 ns in (a), while the wavelength is set at 2.0 μm in (b).
Fig. 7
Fig. 7 THz radiation intensity as a function of (a) the wavelength and (b) the period of the applied SAW field. The SAW field period in (a) is 2.0 ns and the SAW field wavelength is 2.0 μm in (b). The radiation intensities presented in (a) and (b) are re-plotted as functions of the radiation frequency in (c) and (d), respectively. The chemical potential of the graphene layer and the MoS2 flake doping density are μ c = 0.35 eV and N D = 1.2 × 1010 cm−2 (black lines), μ c = 0.45 eV and N D = 1.0 × 1010 cm−2 (red lines), μ c = 0.45 eV and N D = 1.0 × 1012 cm−2 (green lines),   μ c = 0.45 eV and N D = 1.4 × 1010 cm−2 (blue lines), and μ c = 0.50 eV and N D = 1.2 × 1010 cm−2 (cyan lines).
Fig. 8
Fig. 8 THz radiation conversion efficiency as functions of (a) the wavelength and (b) the period of the applied SAW field. The SAW field period is 2.0 ns in (a) and the SAW field wavelength is 2.0 μm in (b).

Tables (1)

Tables Icon

Table 1 Parameters Used in the Model Calculations

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

p( z,t ) t = k B T q μ p 2 p( z,t ) z 2 μ p E( z,t ) p( z,t ) z μ p p( z,t ) E( z,t ) z R( z,t )
n( z,t ) t = k B T q μ n 2 n( z,t ) z 2 + μ n E( z,t ) n( z,t ) z + μ n n( z,t ) E( z,t ) z R( z,t )
E B ( z,t ) z = q ε [ p( z,t )n( z,t )+ N D ]
E SAW ( z,t )= A SAW sin[2π( z λ SAW t T SAW )]
ε r ( z,t )=1 n( z,t ) q 2 ε 0 m ω SAW 2
E z ={ A 1 e i k 1 ( yd )                                      ( Ι :y>d ) ( A 2 e i k 2 y + A 3 e i k 2 ( yd ) )    ( ΙΙ :0<yd ) A 4 e i k 3 y                                         ( ΙΙΙ :y0 ) ,
H x ={ ω ε 0 k 1 A 1 e i k 1 ( yd )                                           ( Ι :y>d ) ω ε II ε 0 k 2 ( A 2 e i k 2 y A 3 e i k 2 ( yd ) )    ( ΙΙ :0<yd ) ω ε III ε 0 k 3 A 4 e i k 3 y                                        ( ΙΙΙ :y0 ) ,
E z i | y=d + E z Ι | y=d = E z ΙΙ | y=d ,( H x ΙΙ H x Ι H x i ) | y=d = σ g E z ΙΙ | y=d
E z ΙΙ | y=0 = E z IΙΙ | y=0 , H x ΙΙ | y=0 = H x ΙIΙ | y=0
{ E z i = q k c 2ω ε 0 e i k c ( ybd ) e i k z z H x i = q 2 e i k c ( ybd ) e i k z z           
σ g = i q 2 k B T π 2 ( ω+i τ 1 ) [ μ c k B T +2ln( e μ c k B T +1 ) ]
P z ( ω )= 1 2 Re[ E z ΙΙΙ × H x ΙΙΙ ]=Re[ κ 3 2ω ε 0 ε ΙΙΙ | A 4 | 2 ]
A 4 = q 2 e i k c b ( 1+ k c κ 1 )( M+ e i κ 2 d ) ( M e i κ 2 d +1 )( σ g κ 2 ω ε 0 ε ΙΙ + κ 2 ε ΙΙ κ 1 )( M e i κ 2 d 1 )
M= ε ΙΙΙ κ 2 ε ΙΙ κ 3 ε ΙΙΙ κ 2 + ε ΙΙ κ 3 e i κ 2 d
E z Ι | y=d = E z ΙΙ | y=d ,( H x ΙΙ H x Ι ) | y=d = σ g E z Ι | y=d
E z ΙΙ | y=0 = E z IΙΙ | y=0 , H x ΙΙ | y=0 = H x IΙΙ | y=0
ε ΙΙ ¯ κ 3 ε ΙΙΙ κ 2 ε II ¯ κ 3 + ε ΙΙΙ κ 2 e 2i κ 2 d = κ 1 ω ε 0 ε II ¯ + κ 1 κ 2 σ g + κ 2 ω ε 0 κ 1 ω ε 0 ε II ¯ κ 1 κ 2 σ g κ 2 ω ε 0

Metrics