Abstract

This paper presents a complete framework for capturing and processing hyperspectral reflectance images of artworks in situ, using a hyperspectral line scanner. These capturing systems are commonly used in laboratory conditions synchronized with scanning stages specifically designed for planar surfaces. However, when the intended application domain does not allow for image capture in these controlled conditions, achieving useful spectral reflectance image data can be a very challenging task (due to uncontrolled illumination, high-dynamic range (HDR) conditions in the scene, and the influence of chromatic aberration on the image quality, among other factors). We show, for the first time, all the necessary steps in the image capturing and post-processing in order to obtain high-quality HDR-based reflectance in the visible and near infrared, directly from the data captured by using a hyperspectral line scanner coupled to a rotating tripod. Our results show that the proposed method outperforms the normal capturing process in terms of dynamic range, color and spectral accuracy. To demonstrate the potential interest of this processing strategy for on-site analysis of artworks, we applied it to the study of a vintage copy of the famous painting “Transfiguration” by Raphael, as well as a facsimile of “The Golden Haggadah” from the British Library of London. The second piece has been studied for the identification of highly reflective gold-foil covered areas.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images

Miguel Ángel Martínez-Domingo, Eva M. Valero, Javier Hernández-Andrés, Shoji Tominaga, Takahiko Horiuchi, and Keita Hirai
Opt. Express 25(24) 30073-30090 (2017)

Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager

Jia Eckhard, Timo Eckhard, Eva M. Valero, Juan Luis Nieves, and Estibaliz Garrote Contreras
Appl. Opt. 54(13) D15-D24 (2015)

Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies

Miguel A. Martínez, Eva M. Valero, and Javier Hernández-Andrés
Appl. Opt. 54(4) B241-B250 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
    [Crossref]
  2. M. Martínez, E. Valero, J. Hernández-Andrés, J. Romero, and G. Langfelder, “Combining Transverse Field Detectors and Color Filter Arrays to improve multispectral imaging systems,” Appl. Opt. 53, C14–C24 (2014).
    [Crossref] [PubMed]
  3. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A,  106(2), 309–323 (2012).
    [Crossref]
  4. C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv.,  51(sup1), 3–16 (2006).
    [Crossref]
  5. M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).
  6. B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
    [Crossref]
  7. P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
    [Crossref]
  8. L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
    [Crossref]
  9. F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
    [Crossref]
  10. A. Consentino, “Identification of pigments by multispectral imaging; a flowchart method,” Herit. Sci.,  2 (1), 8–20 (2014).
    [Crossref]
  11. H. Grahn and H. P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons,2007).
    [Crossref]
  12. J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.
  13. P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
    [Crossref]
  14. K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
    [Crossref]
  15. M. D. Fairchild, “Spectral adaptation,” Color Res. Appl.,  32 (2), 100–112 (2007).
    [Crossref]
  16. R. Shrestha and J. Y. Hardeberg, “Spectrogenic imaging: A novel approach to multispectral imaging in an uncontrolled environment,” Opt. Expr. 22(8), 9123–9133 (2014).
    [Crossref]
  17. H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
    [Crossref]
  18. J. L. Nieves, C. Plata, E. M. Valero, and J. Romero, “Unsupervised illuminant estimation from natural scenes: an RGB digital camera suffices,” Appl. Opt. 47(20), 3574–3584 (2008).
    [Crossref] [PubMed]
  19. D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
    [Crossref]
  20. H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
    [Crossref]
  21. J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
    [Crossref]
  22. A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
    [Crossref]
  23. M. Martínez, E. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54(4), B241–B250 (2015).
    [Crossref] [PubMed]
  24. M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).
  25. J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
    [Crossref]
  26. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).
  27. J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley & Sons, 2011).
    [Crossref]
  28. M. D. Fairchild, “The HDR photographic survey,” in Proceedings of Color and Imaging Conference, (2007) pp. 233–238.
  29. P. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of ACM SIGGRAPH pp. 31–40, (2008).
  30. M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.
  31. M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
    [Crossref]
  32. J. McCann and A. Rizzi, “Camera and visual veiling glare in HDR images,” J. Soc. Inf. Display 15, 721–730 (2012).
    [Crossref]
  33. J. Eckhard, T. Eckhard, E. M. Valero, J. L. Nieves, and E. G. Contreras, “Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager,” Appl. Opt. 54(13), D15–D24 (2015).
    [Crossref]
  34. Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.
  35. L. Shis, “Autofocus survey: a comparison of algorithms,” Proceedings of Digital photography III (2007), pp. 65020B.
  36. H. Xu, J. Liu, Y. Li, Z. Yan, and H. Lu, “Autofocus using adaptive prediction approximation combined search for the fluorescence microscope in second-generation DNA sequencing system,” Appl. Opt. 53(20), 4509–4518 (2014).
    [Crossref] [PubMed]
  37. E. Krotkov and J. P. Martin, “Range from focus,” Proceedings of IEEE International Conference on Robotics and Automation. 3, 1093–1098 (1986).
  38. T. Eckhard, J. Eckhard, E. Valero, and J. Nieves, “Nonrigid registration with free-form deformation model of multilevel uniform cubic B-splines: application to image registration and distortion correction of spectral image cubes,” Appl. Opt. 53(17), 3764–3772 (2014).
    [Crossref] [PubMed]
  39. H. Bay, T. Tuytelaars, and L. VanGool, “Surf: Speeded up robust features,” Proceedings of European conference on computer vision. pp. 404–417 (Springer, 2006).

2018 (3)

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

2017 (5)

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
[Crossref]

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
[Crossref]

J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
[Crossref]

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

2016 (2)

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

2015 (4)

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

M. Martínez, E. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54(4), B241–B250 (2015).
[Crossref] [PubMed]

M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).

J. Eckhard, T. Eckhard, E. M. Valero, J. L. Nieves, and E. G. Contreras, “Outdoor scene reflectance measurements using a Bragg-grating-based hyperspectral imager,” Appl. Opt. 54(13), D15–D24 (2015).
[Crossref]

2014 (5)

2013 (1)

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

2012 (2)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A,  106(2), 309–323 (2012).
[Crossref]

J. McCann and A. Rizzi, “Camera and visual veiling glare in HDR images,” J. Soc. Inf. Display 15, 721–730 (2012).
[Crossref]

2008 (2)

P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
[Crossref]

J. L. Nieves, C. Plata, E. M. Valero, and J. Romero, “Unsupervised illuminant estimation from natural scenes: an RGB digital camera suffices,” Appl. Opt. 47(20), 3574–3584 (2008).
[Crossref] [PubMed]

2007 (2)

M. D. Fairchild, “Spectral adaptation,” Color Res. Appl.,  32 (2), 100–112 (2007).
[Crossref]

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

2006 (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv.,  51(sup1), 3–16 (2006).
[Crossref]

Aach, T.

J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.

Ajdin, B.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

An, D.

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

Baeten, V.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Bay, H.

H. Bay, T. Tuytelaars, and L. VanGool, “Surf: Speeded up robust features,” Proceedings of European conference on computer vision. pp. 404–417 (Springer, 2006).

Bell, A.

J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.

Blanc, R.

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

Boudry, C.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Brauers, J.

J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.

Castro, K.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Consentino, A.

A. Consentino, “Identification of pigments by multispectral imaging; a flowchart method,” Herit. Sci.,  2 (1), 8–20 (2014).
[Crossref]

Contreras, E. G.

Dai, Q.

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

Dale, L. M.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Daniel, F.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Dardenne, P.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Debevec, P.

P. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of ACM SIGGRAPH pp. 31–40, (2008).

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Delaney, J. K.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Dooley, K. A.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Durán, A.

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

Durban, M.

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

Eckhard, J.

Eckhard, T.

Espejo, T.

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

Fairchild, M. D.

M. D. Fairchild, “Spectral adaptation,” Color Res. Appl.,  32 (2), 100–112 (2007).
[Crossref]

M. D. Fairchild, “The HDR photographic survey,” in Proceedings of Color and Imaging Conference, (2007) pp. 233–238.

Fischer, C.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv.,  51(sup1), 3–16 (2006).
[Crossref]

Geladi, H. P.

H. Grahn and H. P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons,2007).
[Crossref]

Glomb, P.

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

Gouton, P.

P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
[Crossref]

Grabowski, B.

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

Grahn, H.

H. Grahn and H. P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons,2007).
[Crossref]

Granados, M.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

Hardeberg, J. Y.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
[Crossref]

R. Shrestha and J. Y. Hardeberg, “Spectrogenic imaging: A novel approach to multispectral imaging in an uncontrolled environment,” Opt. Expr. 22(8), 9123–9133 (2014).
[Crossref]

Heidrich, W.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Hernández-Andrés, J.

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

M. Martínez, E. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54(4), B241–B250 (2015).
[Crossref] [PubMed]

M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).

M. Martínez, E. Valero, J. Hernández-Andrés, J. Romero, and G. Langfelder, “Combining Transverse Field Detectors and Color Filter Arrays to improve multispectral imaging systems,” Appl. Opt. 53, C14–C24 (2014).
[Crossref] [PubMed]

Herrera, L. K.

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

Hirai, K.

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

Hori, M.

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

Horiuchi, T.

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

Kakoulli, I.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv.,  51(sup1), 3–16 (2006).
[Crossref]

Khan, H. A.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
[Crossref]

Krotkov, E.

E. Krotkov and J. P. Martin, “Range from focus,” Proceedings of IEEE International Conference on Robotics and Automation. 3, 1093–1098 (1986).

Laligant, O.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
[Crossref]

Langfelder, G.

Lapray, P. J.

P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
[Crossref]

Lensch, H.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

Li, Y.

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A,  106(2), 309–323 (2012).
[Crossref]

Linhares, J.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
[Crossref]

Liu, J.

Lu, H.

Lu, Y. M.

Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.

Macdonald, L. W.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Malik, J.

P. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of ACM SIGGRAPH pp. 31–40, (2008).

Martin, J. D.

J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
[Crossref]

Martin, J. P.

E. Krotkov and J. P. Martin, “Range from focus,” Proceedings of IEEE International Conference on Robotics and Automation. 3, 1093–1098 (1986).

Martinez, M.

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

Martínez, M.

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

M. Martínez, E. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54(4), B241–B250 (2015).
[Crossref] [PubMed]

M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).

M. Martínez, E. Valero, J. Hernández-Andrés, J. Romero, and G. Langfelder, “Combining Transverse Field Detectors and Color Filter Arrays to improve multispectral imaging systems,” Appl. Opt. 53, C14–C24 (2014).
[Crossref] [PubMed]

Masarczyk, W.

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

McCann, J.

J. McCann and A. Rizzi, “Camera and visual veiling glare in HDR images,” J. Soc. Inf. Display 15, 721–730 (2012).
[Crossref]

McCann, J. J.

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley & Sons, 2011).
[Crossref]

Mendez, E.

Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.

Mendys, A.

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

Morales, K. M.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Mounier, A.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Myszkowski, K.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Nascimento, S.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
[Crossref]

Nieves, J.

Nieves, J. L.

Obarzanowski, M.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Osawa, N.

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

Pardos, C.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Pattanaik, S.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Pérez, J.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Pérez, J. L.

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

Picollo, M.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Pierna, J. A. F.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Pillay, R.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Pinto, P.

P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
[Crossref]

Plata, C.

Prieto, N.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

Reinhard, E.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Ricciardi, P.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Rizzi, A.

J. McCann and A. Rizzi, “Camera and visual veiling glare in HDR images,” J. Soc. Inf. Display 15, 721–730 (2012).
[Crossref]

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley & Sons, 2011).
[Crossref]

Robador, M. D.

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

Romero, J.

Rotar, I.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Sadeghipoor, Z.

Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.

Schulte, N.

J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.

Seidel, H.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

Shis, L.

L. Shis, “Autofocus survey: a comparison of algorithms,” Proceedings of Digital photography III (2007), pp. 65020B.

Shrestha, R.

R. Shrestha and J. Y. Hardeberg, “Spectrogenic imaging: A novel approach to multispectral imaging in an uncontrolled environment,” Opt. Expr. 22(8), 9123–9133 (2014).
[Crossref]

Sobczyk, J.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Suo, J.

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

Susstrunk, S.

Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.

Theobalt, C.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

Thewis, A.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Thomas, J. B.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
[Crossref]

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Illuminant estimation in multispectral imaging,” J. Opt. Soc. Am. A 34(7), 1085–1098 (2017).
[Crossref]

Thoury, M.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Tominaga, S.

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

Tuytelaars, T.

H. Bay, T. Tuytelaars, and L. VanGool, “Surf: Speeded up robust features,” Proceedings of European conference on computer vision. pp. 404–417 (Springer, 2006).

Valero, E.

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

M. Martínez, E. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” Appl. Opt. 54(4), B241–B250 (2015).
[Crossref] [PubMed]

M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).

M. Martínez, E. Valero, J. Hernández-Andrés, J. Romero, and G. Langfelder, “Combining Transverse Field Detectors and Color Filter Arrays to improve multispectral imaging systems,” Appl. Opt. 53, C14–C24 (2014).
[Crossref] [PubMed]

T. Eckhard, J. Eckhard, E. Valero, and J. Nieves, “Nonrigid registration with free-form deformation model of multilevel uniform cubic B-splines: application to image registration and distortion correction of spectral image cubes,” Appl. Opt. 53(17), 3764–3772 (2014).
[Crossref] [PubMed]

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

Valero, E. M.

Vallejuelo, S. F. O.

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

VanGool, L.

H. Bay, T. Tuytelaars, and L. VanGool, “Surf: Speeded up robust features,” Proceedings of European conference on computer vision. pp. 404–417 (Springer, 2006).

Vílchez, J. L.

J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
[Crossref]

Vitorino, T.

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

Wand, M.

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

Wang, H.

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

Ward, G.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

Xu, H.

Yan, Z.

Zafra, A.

J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
[Crossref]

Zeibel, J. G.

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

Appl. Opt. (6)

Appl. Phys. A (1)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A,  106(2), 309–323 (2012).
[Crossref]

Appl. Spectrosc. Rev. (1)

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review,” Appl. Spectrosc. Rev.,  48(2),142–159 (2013).
[Crossref]

Color Res. Appl. (2)

M. D. Fairchild, “Spectral adaptation,” Color Res. Appl.,  32 (2), 100–112 (2007).
[Crossref]

A. Durán, L. K. Herrera, M. D. Robador, and J. L. Pérez, “Color study of Mudejar paintings of the pond found in the palace of “Reales Alcazares” in Seville,” Color Res. Appl.,  32 (6), 489–495 (2007).
[Crossref]

Herit. Sci. (3)

J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci. 4(1), 6 (2016).
[Crossref]

A. Consentino, “Identification of pigments by multispectral imaging; a flowchart method,” Herit. Sci.,  2 (1), 8–20 (2014).
[Crossref]

L. W. Macdonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento, and J. Linhares, “Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon,” Herit. Sci. 5(1), 41 (2017).
[Crossref]

J. Cult. Herit. (1)

B. Grabowski, W. Masarczyk, P. Glomb, and A. Mendys, “Automatic pigment identification from hyperspectral data,” J. Cult. Herit. 31, 1–12 (2018).
[Crossref]

J. Imaging (1)

K. Hirai, N. Osawa, M. Hori, T. Horiuchi, and S. Tominaga, “High-Dynamic-Range Spectral Imaging System for Omnidirectional Scene Capture,” J. Imaging,  4 (4), 53 (2018).
[Crossref]

J. Imaging Sci. Techn. (1)

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, “Spectral Adaptation Transform for Multispectral Constancy,” J. Imaging Sci. Techn.,  62(2), 20504 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

P. Pinto, J. Linhares, and S. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A. 25 (3), 623–630 (2008).
[Crossref]

J. Soc. Inf. Display (1)

J. McCann and A. Rizzi, “Camera and visual veiling glare in HDR images,” J. Soc. Inf. Display 15, 721–730 (2012).
[Crossref]

Microchem. J. (2)

F. Daniel, A. Mounier, J. Pérez, C. Pardos, N. Prieto, S. F. O. Vallejuelo, and K. Castro, “Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain),” Microchem. J.,  126, 113–120 (2016).
[Crossref]

J. D. Martin, A. Zafra, and J. L. Vílchez, “Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction,” Microchem. J. 134, 343–353 (2017).
[Crossref]

Opt. Expr. (3)

D. An, J. Suo, H. Wang, and Q. Dai, “Illumination estimation from specular highlight in a multi-spectral image,” Opt. Expr. 23(13), 17008–17023 (2015).
[Crossref]

M. Martínez, E. Valero, J. Hernández-Andrés, S. Tominaga, T. Horiuchi, and K. Hirai, “Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images,” Opt. Expr. 25(24), 30073–30090 (2017).
[Crossref]

R. Shrestha and J. Y. Hardeberg, “Spectrogenic imaging: A novel approach to multispectral imaging in an uncontrolled environment,” Opt. Expr. 22(8), 9123–9133 (2014).
[Crossref]

Proceedings AIC conference in Tokyo (1)

M. Martínez, E. Valero, J. Hernández-Andrés, and J. Romero, “HDR imaging - Automatic Exposure Time Estimation. A novel approach,” Proceedings AIC conference in Tokyo 54(4), pp. 603–608 (2015).

Sensors (1)

P. J. Lapray, J. B. Thomas, and P. Gouton, “High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras,” Sensors,  17 (6), 1281 (2017).
[Crossref]

Stud. Conserv. (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv.,  51(sup1), 3–16 (2006).
[Crossref]

Other (12)

M. Martinez, E. Valero, M. Durban, R. Blanc, and T. Espejo, “Analysis of ageing processes of paper graphics documents with different varnishes through hyperspectral imaging,” Hyperspectral Imaging and Applications conference. Conventry, UK. (2018).

H. Grahn and H. P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons,2007).
[Crossref]

J. Brauers, N. Schulte, A. Bell, and T. Aach, “Multispectral High Dynamic Range Imaging,” IS&T SPIE Electronic Imaging. California, USA. (2008) pp. 680704.

E. Krotkov and J. P. Martin, “Range from focus,” Proceedings of IEEE International Conference on Robotics and Automation. 3, 1093–1098 (1986).

Z. Sadeghipoor, Y. M. Lu, E. Mendez, and S. Susstrunk, “Multiscale guided deblurring: Chromatic aberration correction in color and near-infrared imaging,” Proceedings EUSIPCO IEEE (IEEE,2015) pp. 2336–2340.

L. Shis, “Autofocus survey: a comparison of algorithms,” Proceedings of Digital photography III (2007), pp. 65020B.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lightning(Morgan Kaufmann, 2010).

J. J. McCann and A. Rizzi, The art and science of HDR imaging(John Wiley & Sons, 2011).
[Crossref]

M. D. Fairchild, “The HDR photographic survey,” in Proceedings of Color and Imaging Conference, (2007) pp. 233–238.

P. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of ACM SIGGRAPH pp. 31–40, (2008).

M. Granados, B. Ajdin, M. Wand, C. Theobalt, H. Seidel, and H. Lensch, “Optimal HDR reconstruction with linear digital cameras,” in Proc. CVPR IEEE, (IEEE, 2010) pp. 215–222.

H. Bay, T. Tuytelaars, and L. VanGool, “Surf: Speeded up robust features,” Proceedings of European conference on computer vision. pp. 404–417 (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Workflow of the capturing and processing steps.
Fig. 2
Fig. 2 a) PikaL line scanner mounted in linear stage for scanning samples of reduced size. b) PikaL scanner mounted on rotating tripod and gray tarp. c) set up for the measurement of the art painting. d) Relative irradiance map impinging on the painting at 702 nm band (red means high and blue low irradiance).
Fig. 3
Fig. 3 Left: normalized LDR radiance profile of the green segment drawn in the detail of the painting shown on the right. Right: LDR radiance image of spectral band corresponding to 584 nm.
Fig. 4
Fig. 4 Contrast stretched grayscale images of three different spectral bands captured at the same time. Note the effect of the chromatic aberration in the lack of sharpness of the short-most and long-most wavelengths.
Fig. 5
Fig. 5 Left: weighting function applied for building the weight maps. Center: weight map computed for 972 nm band using 59.04 ms of exposure time. Right: mean weight map computed for 972 nm band.
Fig. 6
Fig. 6 Left: sRGB capture simulation of C u b e L D R and zoom in detail. Right: sRGB capture simulation of C u b e H D R and zoom in detail. The effects of chromatic aberrations are mostly visible on the edges.
Fig. 7
Fig. 7 Comparison of spectral reflectances measured with the spectroradiometer (red line), and retrieved from the C u b e L D R (green dashed line) and the C u b e H D R (blue dashed line). X axis represents wavelength in nanometers, and Y axis Reflectance.
Fig. 8
Fig. 8 RGB renderization of the spectral reflectance cubes, together with red highlight of the golden material found, and the segmentation compared with the ground truth. Left: C u b e H D R. Right: C u b e L D R.

Tables (2)

Tables Icon

Table 1 Color and spectral metrics results comparing LDR (L) and HDR (H) spectral reflectances only in the visible range (vis, from 400 to 720 nm).

Tables Icon

Table 2 Spectral metrics results comparing LDR (L) and HDR (H) spectral reflectances in the full visible and near-infra-red range (vnir, from 400 to 1000 nm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ r a w ( x , y , λ ) = S P D i l l u m ( x , y , λ ) R e f s a m p l e ( x , y , λ ) R e s p s e n s ( λ )
ρ r a d ( x , y , λ ) = C R F 1 ( ρ r a w ( x , y , λ ) )
r a d f f H D R ( x , y , λ ) = n = 1 N ω n ( x , y , λ ) r a d n , f f ( x , y , λ ) n = 1 N ω n ( x , y , λ )
r e f L D R , n ( x , y , λ ) = r a d s a m p l e , n ( x , y , λ ) r a d f f H D R ( x , y , λ ) r e f f f ( λ )
r e f H D R ( x , y , λ ) = n = 1 N ω n ( x , y , λ ) r e f L D R , n ( x , y , λ ) n = 1 N ω n ( x , y , λ )
S = 1 h v S i , j [ ( G x ( i , j ) ) 2 + ( G y ( i , j ) ) 2 ]
R ( n , λ ) = r a d s a m p l e ( n , λ ) r a d w h i t e ( n , λ ) r e f w h i t e ( λ )

Metrics