Abstract

In this paper, we proposed and numerically demonstrated a novel method to effectively minimize Fresnel reflection from a perpendicularly cleaved fiber using a uniform fiber Bragg grating (FBG) inscribed at the fiber end. By matching the reflectivity of an in-line FBG with the reflectivity caused by the glass-air boundary, the FBG acts as a virtual boundary, which provides destructive interference and suppresses Fresnel reflection. We achieved an anti-reflection FBG with a return loss of more than 80 dB by ensuring that the product of the index contrast and grating period number is almost constant, with a value of 0.2695.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bragg gratings inscribed in selectively inflated photonic crystal fibers

Chao Wang, Jun He, Jingchuan Zhang, Changrui Liao, Ying Wang, Wei Jin, Yiping Wang, and Junhua Wang
Opt. Express 25(23) 28442-28450 (2017)

Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces

Jasbinder Sanghera, Catalin Florea, Lynda Busse, Brandon Shaw, Fritz Miklos, and Ishwar Aggarwal
Opt. Express 18(25) 26760-26768 (2010)

Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers

Tigran Baghdasaryan, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans
Opt. Express 23(2) 709-723 (2015)

References

  • View by:
  • |
  • |
  • |

  1. O. Deparis and O. El Daif, “Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells,” Opt. Lett. 37(20), 4230–4232 (2012).
    [Crossref] [PubMed]
  2. P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express 20(S4 Suppl 4), A545–A553 (2012).
    [Crossref]
  3. H. Becker, D. Tonova, M. Sundermann, H. Ehlers, S. Günster, and D. Ristau, “Design and realization of advanced multi-index systems,” Appl. Opt. 53(4), A88–A95 (2014).
    [Crossref] [PubMed]
  4. Y. Matsuoka, M. P. Semtsiv, S. Peters, and W. Ted Masselink, “Broadband multilayer antireflection coating for quantum cascade laser facets,” Opt. Lett. 43(19), 4723–4726 (2018).
    [Crossref] [PubMed]
  5. M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
    [Crossref]
  6. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
    [Crossref]
  7. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
    [Crossref] [PubMed]
  8. M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
    [Crossref] [PubMed]
  9. Z. Yang, J. Wang, Z. Cheng, H. Yin, W. Wang, Y. Huang, and X. Ren, “Reducing light reflection of CIGS solar cells with SiO2 sandwiched by a metal nanoparticle structure,” OSA Continuum 1(4), 1313–1323 (2018).
    [Crossref]
  10. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
    [Crossref] [PubMed]
  11. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4350–4355 (2002).
    [Crossref]
  12. L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
    [Crossref]
  13. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express 2(3), 478–484 (2011).
    [Crossref] [PubMed]
  14. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
    [Crossref] [PubMed]
  15. Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
    [Crossref] [PubMed]
  16. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
    [Crossref] [PubMed]
  17. J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [Crossref]
  18. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
    [Crossref]

2018 (3)

2014 (4)

2013 (1)

2012 (1)

2011 (1)

2010 (2)

2007 (1)

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

2002 (1)

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
[Crossref]

1993 (2)

J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Aggarwal, I.

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Bang, O.

Becker, H.

Bernussi, A. A.

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

Bhattarai, K.

Busse, L.

Cheng, Z.

Deparis, O.

Ehlers, H.

El Daif, O.

Florea, C.

Frisbie, S.

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

Günster, S.

Haberko, J.

Hane, K.

Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
[Crossref] [PubMed]

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
[Crossref]

Holtz, M.

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

Huang, Y.

Ishimori, M.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
[Crossref]

Jakobsen, M. H.

Jang, W.-Y.

Kanamori, Y.

Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013).
[Crossref] [PubMed]

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
[Crossref]

Kang, S.-W.

Kim, D.-K.

Kim, J. O.

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Kowalczyk, M.

Ku, Z.

Lee, S. J.

Lee, Y. T.

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Lin, Y.

Lindquist, R. G.

Lotz, M. R.

Markos, C.

Matsuoka, Y.

Miklos, F.

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Noyola, M.

Okochi, M.

Park, M.-S.

Peters, S.

Petersen, C. R.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Reekie, L.

J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Ren, X.

Ristau, D.

Russell, P. S. J.

J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Sanghera, J.

Semtsiv, M. P.

Shaw, B.

Song, Y. M.

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Sundermann, M.

Taboryski, R.

Ted Masselink, W.

Tian, L.

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

Tonova, D.

Urbas, A.

Wang, J.

Wang, W.

Wasylczyk, P.

Yang, Z.

Yin, H.

Yu, J. S.

Zhou, J.

Zou, Y.

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Electron. Lett. (2)

J.-L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer-laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photonics Technol. Lett. 14(8), 1064–1066 (2002).
[Crossref]

J. Appl. Phys. (1)

L. Tian, S. Frisbie, A. A. Bernussi, and M. Holtz, “Transmission properties of nanoscale aperture arrays in metallic masks on optical fibers,” J. Appl. Phys. 101(1), 014303 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

OSA Continuum (1)

Other (2)

P. Wang and R. Menon, “Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics,” Opt. Express 20(S4 Suppl 4), A545–A553 (2012).
[Crossref]

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4350–4355 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the (a) in-line FBG located far away from the fiber end and (b) AR FBG at the fiber end designed to eliminate reflections from the glass-air interface.
Fig. 2
Fig. 2 Reflectivity spectra of the (a) in-line FBGs and (b) AR-FBGs with different grating period numbers (150, 269, 500, and 1000) obtained from the transfer matrix method. The index contrast Δn is assumed to be 0.001. The AR FBG with a grating period number of 269 has a minimum reflectivity of approximately −70 dB at 1550 nm.
Fig. 3
Fig. 3 (a) Return loss of the AR FBG (i.e., RAR in decibels (dB)) as a function of the index contrast Δn and grating period number mgp, obtained from the transfer matrix method. (b) Comparison of the optimum design points (Δn, mgp) of the AR FBG in order to attain a return loss of more than 80 dB, obtained from the transfer matrix method and Eq. (2) with a constant Cr of 0.2695.
Fig. 4
Fig. 4 Reflectivity values of the AR FBGs with various grating period numbers (539, 269, 135, and 67) in decibels (dB). The respective index contrasts are approximately 0.5 × 10−3, 1 × 10−3, 2 × 10−3 and 4 × 10−3 and are fine-tuned to achieve a return loss of more than 80 dB. The corresponding AR bandwidths at a reference reflectivity of −30 dB are 0.31, 0.61, 1.23, and 2.47 nm, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n i = n s n o ,
Δn m gp = C r ,
T=[ t 1 1 r 1 t 1 1 r 1 t 1 1 t 1 + r 1 2 t 1 1 ], where r 1 = n 1 2 n 2 2 n 1 2 + n 2 2 and t 1 = 2 n 1 n 2 n 1 2 + n 2 2 .
M= T m gp [ t 1 m gp m gp r 1 t 1 m gp m gp r 1 t 1 m gp t 1 m gp ].
C r = n 1 × r so ,

Metrics