Abstract

We develop a front-to-end solution where the shift of chromaticity from scattering of plasmonic nanoparticles is used as the reporter for nano-environmental refractive index variation. By co-projecting possible power combinations of RGB LEDs and digitized color grid density of CCD with various luminance onto the CIE 1931 chromaticity diagram, optimum condition for nanoenvironment sensing can be achieved. The highest resolution for local refractive index change is 0.0021 per distinguishable color, which is higher than that of a typical handheld spectrometer by 4.8 times. This result shows great potential in simplifying nano-environment sensing instruments and is particularly useful for multi-point dynamical process.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the chromatic variation of index of refraction gradients

Duncan T. Moore and Danette P. Ryan
Appl. Opt. 21(6) 1042-1051 (1982)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Lim and S. W. Joo, “Gold nanoparticle-based pH sensor in highly alkaline region at pH > 11: surface-enhanced Raman scattering study,” Appl. Spectrosc. 60(8), 847–852 (2006).
    [Crossref] [PubMed]
  2. W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma, and J. Guan, “Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution,” Nano Lett., (posted 11 January 2018, in press).
  3. R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In-vitro monitoring conformational changes of polypeptide monolayers using infrared plasmonic nanoantennas,” Nano Lett., (posted 2 August 2018, in press).
  4. D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
    [Crossref]
  5. J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
    [Crossref] [PubMed]
  6. H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
    [Crossref] [PubMed]
  7. J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
    [Crossref]
  8. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
    [Crossref] [PubMed]
  9. M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
    [Crossref] [PubMed]
  10. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  11. S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
    [Crossref] [PubMed]
  12. D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
    [Crossref] [PubMed]
  13. Y. Liu and C. Z. Huang, “Single scattering particles based analytical techniques,” Chin. Sci. Bull. 58(17), 1969–1979 (2013).
    [Crossref]
  14. X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
    [PubMed]
  15. W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
    [Crossref] [PubMed]
  16. M. O. Noor and U. J. Krull, “Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors,” Anal. Chem. 86(20), 10331–10339 (2014).
    [Crossref] [PubMed]
  17. Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
    [Crossref] [PubMed]
  18. S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
    [Crossref] [PubMed]
  19. T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
    [Crossref] [PubMed]
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [Crossref] [PubMed]
  21. X. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Med. J. 47(1), 1–9 (2011).
    [Crossref]
  22. A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
    [Crossref] [PubMed]
  23. S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
    [Crossref] [PubMed]
  24. J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
    [Crossref] [PubMed]
  25. C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
    [Crossref] [PubMed]
  26. B. Doherty, M. Thiele, S. Warren-Smith, E. Schartner, H. Ebendorff-Heidepriem, W. Fritzsche, and M. A. Schmidt, “Plasmonic nanoparticle-functionalized exposed-core fiber-an optofluidic refractive index sensing platform,” Opt. Lett. 42(21), 4395–4398 (2017).
    [Crossref] [PubMed]
  27. A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
    [Crossref] [PubMed]
  28. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19(10), 9213–9220 (2011).
    [Crossref] [PubMed]
  29. T. Y. Tseng, P. J. Lai, and K. B. Sung, “High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry,” Opt. Express 19(2), 1291–1300 (2011).
    [Crossref] [PubMed]
  30. P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
    [Crossref] [PubMed]
  31. J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
    [Crossref] [PubMed]
  32. J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
    [Crossref] [PubMed]
  33. Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
    [Crossref] [PubMed]
  34. X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
    [Crossref] [PubMed]
  35. R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30(3), 186–197 (2005).
    [Crossref]
  36. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41(10), 684–688 (1951).
    [Crossref] [PubMed]
  37. F. Carreño and J. M. Zoido, “The influence of luminance on color-difference thresholds,” Color Res. Appl. 26(5), 362–368 (2001).
    [Crossref]
  38. S. A. Burns, “Subtractive color mixture computation,” http://scottburns.us/subtractive-color-mixture/ , (accessed January 2019).
  39. F. Carreño and J. M. Zoido, “Intra-observer and inter-observer variability of color-matching experimental data Variabilidad intra e inter-observadores en las igualaciones de color,” Opt. Pur. y Apl. 37(1), 67–75 (2004).
  40. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref] [PubMed]
  41. R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
    [Crossref]
  42. S. Alrasheed and E. Di Fabrizio, “Plasmonic nanospherical dimers for color pixels,” Nanomater. Nanotechno. 8(5), 1–7 (2018).
  43. Y. L. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 395–419 (2001).
    [Crossref]
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  45. H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8(1), 9589 (2018).
    [Crossref] [PubMed]
  46. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
    [Crossref] [PubMed]
  47. R. W. G. Hunt and M. R. Pointer, Measuring Colour, 4th ed. (Wiley, 2011).
  48. T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
    [Crossref]
  49. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet – sRGB, Ver. 1.10, 1996,” https://www.w3.org/Graphics/Color/sRGB.html , (accessed January 2019).

2018 (4)

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

S. Alrasheed and E. Di Fabrizio, “Plasmonic nanospherical dimers for color pixels,” Nanomater. Nanotechno. 8(5), 1–7 (2018).

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8(1), 9589 (2018).
[Crossref] [PubMed]

2017 (8)

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

B. Doherty, M. Thiele, S. Warren-Smith, E. Schartner, H. Ebendorff-Heidepriem, W. Fritzsche, and M. A. Schmidt, “Plasmonic nanoparticle-functionalized exposed-core fiber-an optofluidic refractive index sensing platform,” Opt. Lett. 42(21), 4395–4398 (2017).
[Crossref] [PubMed]

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

2016 (3)

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

2014 (7)

M. O. Noor and U. J. Krull, “Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors,” Anal. Chem. 86(20), 10331–10339 (2014).
[Crossref] [PubMed]

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref] [PubMed]

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
[Crossref] [PubMed]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

2013 (2)

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

Y. Liu and C. Z. Huang, “Single scattering particles based analytical techniques,” Chin. Sci. Bull. 58(17), 1969–1979 (2013).
[Crossref]

2012 (1)

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

2008 (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30(3), 186–197 (2005).
[Crossref]

2004 (3)

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

F. Carreño and J. M. Zoido, “Intra-observer and inter-observer variability of color-matching experimental data Variabilidad intra e inter-observadores en las igualaciones de color,” Opt. Pur. y Apl. 37(1), 67–75 (2004).

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

2001 (2)

Y. L. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 395–419 (2001).
[Crossref]

F. Carreño and J. M. Zoido, “The influence of luminance on color-difference thresholds,” Color Res. Appl. 26(5), 362–368 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1951 (1)

1931 (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Ahijado-Guzmán, R.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Alrasheed, S.

S. Alrasheed and E. Di Fabrizio, “Plasmonic nanospherical dimers for color pixels,” Nanomater. Nanotechno. 8(5), 1–7 (2018).

Anker, J. N.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Bagley, A. F.

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

Becker, S. F.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Berrahal, Y.

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

Beyer, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Bhatia, S. N.

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

Bingham, J. M.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Blaikie, R. J.

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Blanton, M. R.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Borghs, G.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

Bösker, G.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Boyaci, I. H.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Brown, W. R. J.

Byers, C. P.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Caglayan, H.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Carreño, F.

F. Carreño and J. M. Zoido, “Intra-observer and inter-observer variability of color-matching experimental data Variabilidad intra e inter-observadores en las igualaciones de color,” Opt. Pur. y Apl. 37(1), 67–75 (2004).

F. Carreño and J. M. Zoido, “The influence of luminance on color-difference thresholds,” Color Res. Appl. 26(5), 362–368 (2001).
[Crossref]

Celiksoy, S.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Chang, H. T.

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

Chang, W. S.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Chen, N.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Chen, P.

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref] [PubMed]

Chen, Y. H.

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Cheng, X.

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Chiou, A.

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dai, D.

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Di Fabrizio, E.

S. Alrasheed and E. Di Fabrizio, “Plasmonic nanospherical dimers for color pixels,” Nanomater. Nanotechno. 8(5), 1–7 (2018).

Ding, B.

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Doherty, B.

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Med. J. 47(1), 1–9 (2011).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Esmann, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Fan, C.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Fekete, G.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Fritzsche, W.

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Galler, N.

Gao, P. F.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Gölzhäuser, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Götz, M.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Gu, Z.

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

Gudulluoglu, B.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Guild, J.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Gustafson, B. Å. S.

Y. L. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 395–419 (2001).
[Crossref]

Habib, M.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Haes, A. J.

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

He, J.

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

He, P.

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

He, Y.

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Hill, S.

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Hoener, B. S.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Hogg, D. W.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Homola, J.

Hong, S. H.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Hou, D.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Hu, C. C.

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

Huang, C. Z.

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Y. Liu and C. Z. Huang, “Single scattering particles based analytical techniques,” Chin. Sci. Bull. 58(17), 1969–1979 (2013).
[Crossref]

Huang, X.

X. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Med. J. 47(1), 1–9 (2011).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Hugel, T.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Huynh, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Jana, D.

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

Jing, C.

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joo, S. W.

Kautschor, L. O.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Kollmann, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Krenn, J. R.

Kreno, L. E.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

Krull, U. J.

M. O. Noor and U. J. Krull, “Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors,” Anal. Chem. 86(20), 10331–10339 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Kvasnicka, P.

Lagae, L.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

Lai, P. J.

Lal, R.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Lan, S.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Landes, C. F.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Lee, C. W.

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

Lee, J.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Lei, G.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

Li, C. M.

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Li, H.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Li, J.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Li, N.

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

Li, Q.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Li, R. S.

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

Li, T.

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

Li, X. F.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Li, Y. F.

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Liang, L.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Liedberg, B.

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref] [PubMed]

Lienau, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Lim, J. K.

Link, S.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Liu, F.

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

Liu, H.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

Liu, M.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and C. Z. Huang, “Single scattering particles based analytical techniques,” Chin. Sci. Bull. 58(17), 1969–1979 (2013).
[Crossref]

Lodewijks, K.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

Long, Y. T.

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

Lu, C.

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

Lupton, R.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Lv, M.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Ma, J.

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

Matti, C.

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

McFarland, A. D.

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

Melgosa, M.

R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30(3), 186–197 (2005).
[Crossref]

Nie, S.

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

Noor, M. O.

M. O. Noor and U. J. Krull, “Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors,” Anal. Chem. 86(20), 10331–10339 (2014).
[Crossref] [PubMed]

O’Mullane, W.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Ozbay, E.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Park, N.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Peng, L.

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Piao, X.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Piliarik, M.

Prado, M.

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

Prasad, J.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Pridmore, R. W.

R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30(3), 186–197 (2005).
[Crossref]

Qin, J.

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Qiu, M.

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

Rashed, A. R.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Ratzke, C.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Ricken, J.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Rogers, G. S.

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

Sagle, L.

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

Schartner, E.

Schmidt, M. A.

Shi, J.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Silies, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Smith, T.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Song, H.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Sönnichsen, C.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Stuart, D. A.

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

Sung, K. B.

Szalay, A.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Thiele, M.

Tie, S. L.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Tseng, T. Y.

Tüting, L.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Van Dorpe, P.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

Van Roy, W.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

Vial, S.

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

Vieker, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Wan, X. Y.

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Wang, H.

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8(1), 9589 (2018).
[Crossref] [PubMed]

Wang, K.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Wang, L.

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Wang, S.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
[Crossref] [PubMed]

Wang, S. H.

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

Warren-Smith, S.

Wegner, S. V.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Wei, P. K.

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

Wenger, J.

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

Wherry, N.

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wu, X.

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

Xiang, J.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Xu, H.

S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
[Crossref] [PubMed]

Xu, Y.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Xu, Y. L.

Y. L. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 395–419 (2001).
[Crossref]

Yang, J. K. W.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Yang, X. X.

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Ye, J.

S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
[Crossref] [PubMed]

Ye, W.

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Yeung, E. S.

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Ying, Y. L.

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

Yorulmaz, M.

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Yuan, Z.

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

Yun, H. W.

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Zhan, L.

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

Zhang, C. Y.

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Zhang, H. Z.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

Zheng, L. L.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

Zhou, J.

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

Zoido, J. M.

F. Carreño and J. M. Zoido, “Intra-observer and inter-observer variability of color-matching experimental data Variabilidad intra e inter-observadores en las igualaciones de color,” Opt. Pur. y Apl. 37(1), 67–75 (2004).

F. Carreño and J. M. Zoido, “The influence of luminance on color-difference thresholds,” Color Res. Appl. 26(5), 362–368 (2001).
[Crossref]

ACS Nano (1)

A. F. Bagley, S. Hill, G. S. Rogers, and S. N. Bhatia, “Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source,” ACS Nano 7(9), 8089–8097 (2013).
[Crossref] [PubMed]

ACS Sens. (1)

S. Vial, Y. Berrahal, M. Prado, and J. Wenger, “Single-step DNA detection assay monitoring dual-color light scattering from individual metal nanoparticle aggregates,” ACS Sens. 2(2), 251–256 (2017).
[Crossref] [PubMed]

Alexandria Med. J. (1)

X. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT),” Alexandria Med. J. 47(1), 1–9 (2011).
[Crossref]

Anal. Chem. (5)

P. Chen and B. Liedberg, “Curvature of the localized surface plasmon resonance peak,” Anal. Chem. 86(15), 7399–7405 (2014).
[Crossref] [PubMed]

X. Cheng, D. Dai, Z. Yuan, L. Peng, Y. He, and E. S. Yeung, “Color difference amplification between gold nanoparticles in colorimetric analysis with actively controlled multiband illumination,” Anal. Chem. 86(15), 7584–7592 (2014).
[Crossref] [PubMed]

D. Jana, C. Matti, J. He, and L. Sagle, “Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing,” Anal. Chem. 87(7), 3964–3972 (2015).
[Crossref] [PubMed]

M. O. Noor and U. J. Krull, “Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors,” Anal. Chem. 86(20), 10331–10339 (2014).
[Crossref] [PubMed]

J. Ma, L. Zhan, R. S. Li, P. F. Gao, and C. Z. Huang, “Color-encoded assays for the simultaneous quantification of dual cancer biomarkers,” Anal. Chem. 89(16), 8484–8489 (2017).
[Crossref] [PubMed]

Analyst (Lond.) (2)

Z. Yuan, C. C. Hu, H. T. Chang, and C. Lu, “Gold nanoparticles as sensitive optical probes,” Analyst (Lond.) 141(5), 1611–1626 (2016).
[Crossref] [PubMed]

T. Li, X. Wu, F. Liu, and N. Li, “Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging,” Analyst (Lond.) 142(2), 248–256 (2017).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Chin. Sci. Bull. (1)

Y. Liu and C. Z. Huang, “Single scattering particles based analytical techniques,” Chin. Sci. Bull. 58(17), 1969–1979 (2013).
[Crossref]

Color Res. Appl. (2)

R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30(3), 186–197 (2005).
[Crossref]

F. Carreño and J. M. Zoido, “The influence of luminance on color-difference thresholds,” Color Res. Appl. 26(5), 362–368 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, “Gas sensing with high-resolution localized surface plasmon resonance spectroscopy,” J. Am. Chem. Soc. 132(49), 17358–17359 (2010).
[Crossref] [PubMed]

J. Nanobiotechnology (1)

S. H. Wang, C. W. Lee, A. Chiou, and P. K. Wei, “Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images,” J. Nanobiotechnology 8(1), 33 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

C. P. Byers, B. S. Hoener, W. S. Chang, M. Yorulmaz, S. Link, and C. F. Landes, “Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon,” J. Phys. Chem. B 118(49), 14047–14055 (2014).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. Qin, Y. H. Chen, B. Ding, R. J. Blaikie, and M. Qiu, “Plasmonic gas sensing based on cavity-coupled metallic nanoparticles,” J. Phys. Chem. C 121(44), 24740–24744 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. L. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 395–419 (2001).
[Crossref]

Lasers Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[Crossref] [PubMed]

Nano Lett. (4)

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements,” Nano Lett. 12(3), 1655–1659 (2012).
[Crossref] [PubMed]

W. Ye, M. Götz, S. Celiksoy, L. Tüting, C. Ratzke, J. Prasad, J. Ricken, S. V. Wegner, R. Ahijado-Guzmán, T. Hugel, and C. Sönnichsen, “Conformational dynamics of a single protein monitored for 24 h at video rate,” Nano Lett. 18(10), 6633–6637 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of Helium-Ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Nanomater. Nanotechno. (1)

S. Alrasheed and E. Di Fabrizio, “Plasmonic nanospherical dimers for color pixels,” Nanomater. Nanotechno. 8(5), 1–7 (2018).

Nanoscale (3)

J. Zhou, G. Lei, L. L. Zheng, P. F. Gao, and C. Z. Huang, “HSI colour-coded analysis of scattered light of single plasmonic nanoparticles,” Nanoscale 8(22), 11467–11471 (2016).
[Crossref] [PubMed]

J. Zhou, P. F. Gao, H. Z. Zhang, G. Lei, L. L. Zheng, H. Liu, and C. Z. Huang, “Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection,” Nanoscale 9(13), 4593–4600 (2017).
[Crossref] [PubMed]

H. Li, Y. Xu, J. Xiang, X. F. Li, C. Y. Zhang, S. L. Tie, and S. Lan, “Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices,” Nanoscale 8(45), 18963–18971 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Liu, Q. Li, L. Liang, J. Li, K. Wang, J. Li, M. Lv, N. Chen, H. Song, J. Lee, J. Shi, L. Wang, R. Lal, and C. Fan, “Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging,” Nat. Commun. 8, 15646 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Pur. y Apl. (1)

F. Carreño and J. M. Zoido, “Intra-observer and inter-observer variability of color-matching experimental data Variabilidad intra e inter-observadores en las igualaciones de color,” Opt. Pur. y Apl. 37(1), 67–75 (2004).

Phys. Chem. Chem. Phys. (1)

S. Wang, H. Xu, and J. Ye, “Plasmonic rod-in-shell nanoparticles for photothermal therapy,” Phys. Chem. Chem. Phys. 16(24), 12275–12281 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Proc. SPIE (1)

D. A. Stuart, A. J. Haes, A. D. McFarland, S. Nie, and R. P. Van Duyne, “Refractive index sensitive, plasmon resonant scattering, and surface enhanced Raman scattering nanoparticles and arrays as biological sensing platforms,” Proc. SPIE 5327, 60–73 (2004).
[Crossref]

Publ. Astron. Soc. Pac. (1)

R. Lupton, M. R. Blanton, G. Fekete, D. W. Hogg, W. O’Mullane, A. Szalay, and N. Wherry, “Preparing red-green-blue images from CCD data,” Publ. Astron. Soc. Pac. 116(816), 133–137 (2004).
[Crossref]

Sci. Rep. (3)

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations,” Sci. Rep. 8(1), 9589 (2018).
[Crossref] [PubMed]

X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, and C. Z. Huang, “Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells,” Sci. Rep. 4(4), 4529 (2014).
[PubMed]

A. R. Rashed, B. Gudulluoglu, H. W. Yun, M. Habib, I. H. Boyaci, S. H. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” Sci. Rep. 8(1), 11457 (2018).
[Crossref] [PubMed]

Theranostics (1)

Z. Gu, C. Jing, Y. L. Ying, P. He, and Y. T. Long, “In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells,” Theranostics 5(2), 188–195 (2015).
[Crossref] [PubMed]

Trans. Opt. Soc. (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931).
[Crossref]

Other (5)

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet – sRGB, Ver. 1.10, 1996,” https://www.w3.org/Graphics/Color/sRGB.html , (accessed January 2019).

R. W. G. Hunt and M. R. Pointer, Measuring Colour, 4th ed. (Wiley, 2011).

S. A. Burns, “Subtractive color mixture computation,” http://scottburns.us/subtractive-color-mixture/ , (accessed January 2019).

W. Luo, Q. Cui, K. Fang, K. Chen, H. Ma, and J. Guan, “Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution,” Nano Lett., (posted 11 January 2018, in press).

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In-vitro monitoring conformational changes of polypeptide monolayers using infrared plasmonic nanoantennas,” Nano Lett., (posted 2 August 2018, in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) GMM calculated scattering spectra of gold nanoparticles in different surrounding media with RI vary from n = 1 to n = 1.6. The upper row is for the case of monomer, and the lower row is for dimers with 2 nm gap distance. (b) The scattering spectra of nanoparticles illuminated by standard D65 light source. (c) Trajectories of the chromaticity shift (black/red curve) when monomer/dimer was illuminated by D65 light with surrounding’s RI changes from n = 1 to n = 1.6.
Fig. 2
Fig. 2 (a) The spectra of halogen lamp at four different powers. (b)–(c) Trajectories of the chromaticity shift of monomer and dimer illuminated by the four light sources, respectively. The bottom row is the enlarged view with chromaticity coordinates of the corresponding light sources designated by points.
Fig. 3
Fig. 3 RGB power distribution for producing the CIE 1931 chromaticity diagram, where (a), (b), and (c) for R, G, and B LED, respectively.
Fig. 4
Fig. 4 Color difference enhancement (CDE) of Au monomer illuminated by different power combinations of RGB LEDs. The values at each coordinate (x,y) are referenced to that illuminated by standard D65 light, and the Euclidean distance ΔE = [(Δx)2 + (Δy)2]1/2 was used to define the color difference.
Fig. 5
Fig. 5 The resolvable color gamut of a 24-bit color CCD for individual R, G, and B channel at Y = 3, 30, and 70.
Fig. 6
Fig. 6 The chromatic mosaic (grid) which shows the minimally distinguishable color based on a 24-bit color CCD for luminance (a) Y = 3, (b) Y = 30, and (c) Y = 70. The grid density is calculated over an area of ΔxΔy = 0.03 × 0.03 for (d) Y = 3, (e) Y = 30, and (f) Y = 70, respectively.
Fig. 7
Fig. 7 (a) Scattering spectrum of Au monomer surrounded by a medium with RI changes from n = 1.3 to n = 1.4, and illuminated by D65 light. (b)–(d) CCD based chromatic resolution characterized by the number of grids covering the span of the color shift for Y = 3, Y = 30, and Y = 70, respectively.
Fig. 8
Fig. 8 The effective chromatic resolution characterized by the line grid density which was produced by the convolution between the RGB enhanced color difference and CCD’s chromatic resolution for (a) Y = 3, (b) Y = 30, and (c) Y = 70. The environmental refractive index changes from n = 1.3 to n = 1.4.
Fig. 9
Fig. 9 The process to optimize experimental parameters for achieving the highest possible chromatic resolution.
Fig. 10
Fig. 10 (a) The spectrum of standard D65 light source [47]. (b) The CIE 1931 color matching functions [47]. (c) The spectrum of red (LED631E, Thorlabs), green (LED525E, Thorlabs), and blue (LED405E, Thorlabs) LED light source used in this study.

Tables (1)

Tables Icon

Table 1 Re-assigned RGB values for converting 24-bit into 3-bit data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ X= λ L(λ) x ¯ (λ)dλ Y= λ L(λ) y ¯ (λ)dλ Z= λ L(λ) z ¯ (λ)dλ
{ x= X X+Y+Z y= Y X+Y+Z
{ X= λ [aR(λ)+bG(λ)+cB(λ)] x ¯ (λ)dλ Y= λ [aR(λ)+bG(λ)+cB(λ)] y ¯ (λ)dλ Z= λ [aR(λ)+bG(λ)+cB(λ)] z ¯ (λ)dλ
{ C srgb =12.92 C linear , C srgb =1.055 C linear 1/2.4 0.055, C linear 0.00304 C linear >0.00304
[ R linear G linear B linear ]=[ 3.2410 1.5374 0.4986 0.9692 1.8760 0.0416 0.0556 0.2040 1.0570 ][ X Y Z ]

Metrics