Abstract

We report on experimental and theoretical investigation of mode-splitting dynamics in a ring cavity under the perturbation of fractional Bragg reflection from a periodically-poled nonlinear crystal. Counterintuitively, pronounced mode splitting in the spectral domain could have been observed even with a tiny intensity reflection of 0.0003. The breaking of running-wave operation in the ring-cavity configuration resulted in comparable circulating fields in forward- and counter-propagation directions, which thus dramatically reduced the enhancing factor for the resonating field. In contrast, a linear cavity with intrinsically bidirectional operation was immune to the small intra-cavity reflection. Therefore, the linear-cavity layout could provide an expedient solution for a given internal reflection to obtain more stable and higher enhancement, which was confirmed by comparative studies of mid-infrared generation based on pump-enhanced difference frequency conversion. The underlying mechanism was further modeled by numerical simulations, which agreed well with experimental results. These findings could not only shed light on the understanding of the exotic feature of concatenated optical cavities, but also provide a useful guide to practical design of enhancement cavities for cavity-based frequency conversion with periodically-poled nonlinear crystals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pump-enhanced difference-frequency generation at 3.3 μm

Mark F. Witinski, Joshua B. Paul, and James G. Anderson
Appl. Opt. 48(13) 2600-2606 (2009)

Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator

G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn
Opt. Lett. 25(5) 341-343 (2000)

GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

Lichun Meng, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo
Opt. Express 25(13) 14783-14794 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
    [Crossref] [PubMed]
  2. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77, 6–17 (2010).
    [Crossref]
  3. M. Ebrahim-Zadeh and I. T. Sorokina, eds. Mid-infrared coherent sources and applications (Springer, 2008).
    [Crossref]
  4. A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
    [Crossref]
  5. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  6. A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
    [Crossref]
  7. Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  8. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  9. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34, A15–A28 (2017).
    [Crossref]
  10. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [Crossref] [PubMed]
  11. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  12. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref] [PubMed]
  13. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
    [Crossref]
  14. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
    [Crossref] [PubMed]
  15. S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
    [Crossref] [PubMed]
  16. M. F. Witinski, J. B. Paul, and J. G. Anderson, “Pump-enhanced difference-frequency generation at 3.3 μm,” Appl. Opt. 48, 2600–2606 (2009).
    [Crossref] [PubMed]
  17. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
    [Crossref] [PubMed]
  18. I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
    [Crossref]
  19. C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett. 38, 1820–1822 (2013).
    [Crossref] [PubMed]
  20. M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266 (2016).
    [Crossref] [PubMed]
  21. V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, “Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser,” Opt. Lett. 41, 1388–1391 (2016).
    [Crossref] [PubMed]
  22. Y. Li, Z. Ding, P. Liu, G. Chen, and Z. Zhang, “Widely tunable, continuous-wave, intra-cavity optical parametric oscillator based on an Yb-doped fiber laser,” Opt. Lett. 43, 5391–5394 (2018).
    [Crossref] [PubMed]
  23. Q. Sheng, X. Ding, C. Shi, S. Yin, B. Li, C. Shang, X. Yu, W. Wen, and J. Yao, “Continuous-wave mid-infrared intra-cavity singly resonant PPLN-OPO under 880 nm in-band pumping,” Opt. Express 20, 8041–8046 (2012).
    [Crossref] [PubMed]
  24. J. Chang, Q. Mao, S. Feng, X. Gao, and C. Xu, “Widely tunable mid-IR difference-frequency generation based on fiber lasers,” Opt. Lett. 35, 3486–3488 (2010).
    [Crossref] [PubMed]
  25. M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 μm,” Opt. Express 18, 14087–14092 (2010).
    [Crossref] [PubMed]
  26. S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
    [Crossref]
  27. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
    [Crossref]
  28. K. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009).
    [Crossref] [PubMed]
  29. Q. Hao, G. Zhu, S. Yang, K. Yang, T. Duan, X. Xie, K. Huang, and H. Zeng, “Mid-infrared transmitter and receiver modules for free-space optical communication,” Appl. Opt. 56, 2260–2264 (2017).
    [Crossref] [PubMed]
  30. P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
    [Crossref]
  31. A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
    [Crossref]
  32. S. Xu, Z. Yang, T. Liu, W. Zhang, Z. Feng, Q. Zhang, and Z. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm,” Opt. Express 18, 1249–1254 (2010).
    [Crossref] [PubMed]
  33. S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38, 501–503 (2013).
    [Crossref] [PubMed]
  34. Q. Hao, W. Li, and H. Zeng, “Double-clad fiber amplifier for broadband tunable ytterbium-doped oxyorthosilicates lasers,” Opt. Express 15, 16754–16759 (2007).
    [Crossref] [PubMed]
  35. A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
    [Crossref]
  36. A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
    [Crossref]

2018 (2)

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Y. Li, Z. Ding, P. Liu, G. Chen, and Z. Zhang, “Widely tunable, continuous-wave, intra-cavity optical parametric oscillator based on an Yb-doped fiber laser,” Opt. Lett. 43, 5391–5394 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

2015 (1)

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (4)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Q. Sheng, X. Ding, C. Shi, S. Yin, B. Li, C. Shang, X. Yu, W. Wen, and J. Yao, “Continuous-wave mid-infrared intra-cavity singly resonant PPLN-OPO under 880 nm in-band pumping,” Opt. Express 20, 8041–8046 (2012).
[Crossref] [PubMed]

2011 (2)

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
[Crossref]

2010 (5)

2009 (2)

2008 (1)

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

2007 (1)

2004 (1)

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

2002 (1)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

1996 (1)

1995 (1)

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

1966 (1)

A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
[Crossref]

1957 (1)

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

Alexander, J. I.

Anderson, J. G.

Andrieux, E.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Arnulf, A.

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

Ashkin, A.

A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
[Crossref]

Barnes, J. O.

Bartalini, S.

Boiko, É. V.

Borri, S.

Bosenberg, W. R.

Boyd, G.

A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
[Crossref]

Breunig, I.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
[Crossref]

Briaudeau, S.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Bricard, J.

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

Büchter, K. F.

Buse, K.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
[Crossref]

Byer, R. L.

Cancio, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Chang, J.

Chen, G.

Choi, D.-Y.

Curé, E.

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

Curl, R. F.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Danzmann, K.

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

De Natale, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Ding, X.

Ding, Z.

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Drobshoff, A.

Duan, T.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

Dziedzic, J.

A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
[Crossref]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

Ebrahim-Zadeh, M.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Esteban-Martin, A.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Fan, J.

Fejer, M. M.

Feng, S.

Feng, Z.

Freise, A.

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

Fried, A.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Gai, X.

Galli, I.

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Gao, X.

Giusfredi, G.

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Gmachl, C.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Gonzalez, L. P.

Gorelov, S. D.

Gu, C.

Guha, S.

Haertle, D.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
[Crossref]

Halonen, L.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 μm,” Opt. Express 18, 14087–14092 (2010).
[Crossref] [PubMed]

Hänsch, T. W.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hao, Q.

Heinzel, G.

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

Herrmann, H.

Himbert, M.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Hollberg, L.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Holzner, S.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Hu, M.

Huang, K.

Ideguchi, T.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Jiang, Z.

Kotov, L. V.

Kumar, S. C.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Langrock, C.

Li, B.

Li, C.

Li, W.

Li, Y.

Liu, J.

Liu, K.

Liu, P.

Liu, T.

Loparo, Z. E.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Lück, H.

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Mao, Q.

Mazzotti, D.

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Mo, S.

Muraviev, A. V.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Myers, L. E.

Norwood, R. A.

Paul, J. B.

Peng, M.

Petrishchev, N. N.

Petrov, K. P.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Peyghambarian, N.

Picqué, N.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Qian, Q.

Reid, D. T.

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Rihan, A.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Schilling, R

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schunemann, P. G.

Serebryakov, V. A.

Shang, C.

Shen, S.

Sheng, Q.

Shi, C.

Shi, H.

Sigrist, M. W.

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

Siltanen, M.

Simon, U.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Smolski, V. O.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, “Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser,” Opt. Lett. 41, 1388–1391 (2016).
[Crossref] [PubMed]

Sohler, W.

Song, Y.

Tan, F.

Tittel, F. K.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Tong, M.

Vainio, M.

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 μm,” Opt. Express 18, 14087–14092 (2010).
[Crossref] [PubMed]

Véret, C.

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

Vodopyanov, K. L.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, “Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser,” Opt. Lett. 41, 1388–1391 (2016).
[Crossref] [PubMed]

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Waltman, S.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

Wang, C.

Wang, J.

Wang, P.

Wang, R.

Wang, T.

Wei, C.

Wei, X.

Wen, W.

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Willke, B.

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

Witinski, M. F.

Xie, X.

Xu, C.

Xu, S.

Yan, A. V.

Yan, M.

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Yang, C.

Yang, H.

Yang, K.

Yang, S.

Yang, Z.

Yao, J.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Yin, S.

Yu, X.

Yu, Y.

Zanon-Willette, T.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Zeng, H.

Zhang, L.

Zhang, Q.

Zhang, W.

Zhang, Z.

Zhu, G.

Zhu, X.

Zondy, J.-J.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (4)

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B 102, 367 (2011).
[Crossref]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553–558 (1995).
[Crossref]

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99 (2011).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[Crossref]

Class. Quantum Grav. (1)

A. Freise, G. Heinzel, H. Lück, R Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav. 21, S1067 (2004).
[Crossref]

IEEE J. Quantum Electron (1)

A. Ashkin, G. Boyd, and J. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron 2, 109–124 (1966).
[Crossref]

J Opt. Soc. Am. (1)

A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J Opt. Soc. Am. 47, 491–498 (1957).
[Crossref]

J. Adv. Res. (1)

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Laser Photon. Rev. (1)

S. C. Kumar, A. Esteban-Martin, T. Ideguchi, M. Yan, S. Holzner, T. W. Hänsch, N. Picqué, and M. Ebrahim-Zadeh, “Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti:sapphire laser,” Laser Photon. Rev. 8, L86 (2014).
[Crossref]

Nat. Photonics (4)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12, 209–214 (2018).
[Crossref]

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38, 501–503 (2013).
[Crossref] [PubMed]

J. Chang, Q. Mao, S. Feng, X. Gao, and C. Xu, “Widely tunable mid-IR difference-frequency generation based on fiber lasers,” Opt. Lett. 35, 3486–3488 (2010).
[Crossref] [PubMed]

V. O. Smolski, H. Yang, S. D. Gorelov, P. G. Schunemann, and K. L. Vodopyanov, “Coherence properties of a 2.6–7.5 μm frequency comb produced as a subharmonic of a Tm-fiber laser,” Opt. Lett. 41, 1388–1391 (2016).
[Crossref] [PubMed]

Y. Li, Z. Ding, P. Liu, G. Chen, and Z. Zhang, “Widely tunable, continuous-wave, intra-cavity optical parametric oscillator based on an Yb-doped fiber laser,” Opt. Lett. 43, 5391–5394 (2018).
[Crossref] [PubMed]

K. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009).
[Crossref] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm,” Opt. Lett. 35, 3616–3618 (2010).
[Crossref] [PubMed]

S. Guha, J. O. Barnes, and L. P. Gonzalez, “Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,” Opt. Lett. 39, 5018–5021 (2014).
[Crossref] [PubMed]

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett. 38, 1820–1822 (2013).
[Crossref] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18, 4266 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[Crossref]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref] [PubMed]

Other (1)

M. Ebrahim-Zadeh and I. T. Sorokina, eds. Mid-infrared coherent sources and applications (Springer, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of experimental configuration for preparing pump and signal sources based on two continuous-wave single-frequency fiber lasers. Layout of a ring cavity (b) and linear cavity (c). The geometrical arrangement was engineered to keep the same beam profiles along the optical cavities. (d) Beam radius as a function of the distance from the starting point at mirror M3, for the cases with and without the presence of the nonlinear crystal inside the cavity. The shaded area indicates the occupied space by the 50-mm-length nonlinear crystal. LD: Laser diode; EDFL: Er-doped fiber laser; EDFA: Er-doped fiber amplifier; YDFL: Yb-doped fiber laser; YDFA: Yb-doped fiber amplifier; PM-Er/Yb: polarization-maintaining Er/Yb co-doped gain fiber; PM-Yb: polarization-maintaining Yb-doped gain fiber; WDM: wavelength division multiplexer; M: mirror; PZT: piezoelectric transducer; PPLN: periodically-poled lithium niobate crystal.
Fig. 2
Fig. 2 (a–c) Experimentally recorded output signal from different ports in the ring cavity as varying the cavity length. (d–f) Numerically simulated results with an assumption of 2% loss and 0.4% reflection induced by the PPLN crystal. (g) Output signal from Port I and Port II in the absence of PPLN crystal inside the cavity. (h) Output signal from port II as the variation of crystal temperature.
Fig. 3
Fig. 3 Mode-splitting dynamics for circulating fields in the forward-propagation (a) and backward-propagation (b) directions for various internal reflection induced by the PPLN crystal. In the theoretical model, the power of the inject signal is 1 W and the intrinsic loss of the PPLN crystal is 2%, which are comparable to experimental values.
Fig. 4
Fig. 4 Enhancing factor as a function of the internal intensity reflectivity induced by the PPLN crystal for the resonating optical fields in the forward and backward circulations. Significant drop of the enhancing factor can be observed even with the presence of a tiny fractional reflection.
Fig. 5
Fig. 5 (a) Experimentally recorded profiles in the linear-cavity configuration for the reflected signal at port i, the transmitted signal at port iii in the forward-propagating direction, and the transmitted signal at port ii in the backward-propagating direction. (b) Theoretical spectra of intra-cavity fields for various internal reflection induced by the PPLN crystal. The solid lines denote the the forward-propagating signal while the shaded areas indicate the backward-propagating signal. In the theoretical simulation, the power of the inject signal is 1 W and the intrinsic loss of the PPLN crystal is 2%, which are close to actual values in the experiment.
Fig. 6
Fig. 6 Generated mid-infrared power as a function of pump power for single-pass, ring-cavity, and linear-cavity configurations.

Metrics