Abstract

We study an unusual effect of spectral-band replication in the optical spectra of dimers, consisting of spherical nanoparticles or nanodisks with a silver core and a J-aggregate shell of TDBC-dye. It consists in the emergence of a doubled number of plexcitonic spectral bands compared to the case of a plasmonic dimer and in narrow peaks associated with the resonances of the J-aggregate shell. The plexcitonic bands can be divided into two groups: the “original” bands, accurately reproducing plasmonic peaks, and their “replicas,” with a specific mutual arrangement and intensity distributions. The effect is interpreted using the multi-state effective Hamiltonian model describing a strong coupling between the quasi-degenerate Frenkel excitonic modes in the organic shells and multiple plasmonic modes in the pair of Ag-cores. We quantitatively explain some available experimental data on the optical properties of nanodisks and suggest a way for the observation of the replication effect. Our results extend the understanding of the nature of plexcitonic coupling to more complex systems compared to individual metal/J-aggregate nanoparticles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Layer-by-layer self-assembly of plexcitonic nanoparticles

Brendan G. DeLacy, Wenjun Qiu, Marin Soljačić, Chia Wei Hsu, Owen D. Miller, Steven G. Johnson, and John D. Joannopoulos
Opt. Express 21(16) 19103-19112 (2013)

Tunable strong exciton–plasmon–exciton coupling in WS2–J-aggregates–plasmonic nanocavity

Ping Jiang, Gang Song, Yilin Wang, Chao Li, Lulu Wang, and Li Yu
Opt. Express 27(12) 16613-16623 (2019)

Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev
Opt. Express 26(23) 30324-30337 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
    [Crossref]
  2. M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
    [Crossref]
  3. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
    [Crossref]
  4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  5. K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
    [Crossref]
  6. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
    [Crossref] [PubMed]
  7. N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
    [Crossref]
  8. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
    [Crossref] [PubMed]
  9. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
    [Crossref] [PubMed]
  10. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
    [Crossref] [PubMed]
  11. B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
    [Crossref] [PubMed]
  12. N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
    [Crossref] [PubMed]
  13. J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
    [Crossref]
  14. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
    [Crossref]
  15. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
    [Crossref]
  16. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
    [Crossref]
  17. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
    [Crossref]
  18. V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
    [Crossref]
  19. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
    [Crossref]
  20. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
    [Crossref]
  21. B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
    [Crossref]
  22. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
    [Crossref]
  23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
    [Crossref] [PubMed]
  24. A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
    [Crossref] [PubMed]
  25. H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
    [Crossref]
  26. B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
    [Crossref]
  27. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
    [Crossref]
  28. F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
    [Crossref] [PubMed]
  29. D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
    [Crossref]
  30. B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
    [Crossref]
  31. S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38, 4498–4501 (2013).
    [Crossref] [PubMed]
  32. V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
    [Crossref]
  33. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
    [Crossref] [PubMed]
  34. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
    [Crossref] [PubMed]
  35. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
    [Crossref] [PubMed]
  36. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
    [Crossref]
  37. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
    [Crossref] [PubMed]
  38. B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
    [Crossref] [PubMed]
  39. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
    [Crossref]
  40. A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
    [Crossref]
  41. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
    [Crossref] [PubMed]
  42. A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
    [Crossref]
  43. E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
    [Crossref] [PubMed]
  44. U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
    [Crossref]
  45. X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
    [Crossref]
  46. B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
    [Crossref] [PubMed]
  47. F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
    [Crossref]
  48. G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
    [Crossref] [PubMed]
  49. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
    [Crossref]
  50. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
    [Crossref] [PubMed]
  51. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
    [Crossref] [PubMed]
  52. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
    [Crossref] [PubMed]
  53. V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
    [Crossref]
  54. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
    [Crossref]

2019 (1)

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

2018 (14)

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

2017 (7)

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

2016 (2)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

2015 (5)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

2014 (2)

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

2013 (8)

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38, 4498–4501 (2013).
[Crossref] [PubMed]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

2012 (3)

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

2011 (2)

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

2010 (2)

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

2009 (2)

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

2008 (2)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

2007 (1)

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

2005 (1)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

2004 (1)

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Amendola, V.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Anicijevic, D. V.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Anquillare, E.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Antosiewicz, T. J.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

Arima, V.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Avayu, O.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Bakin, A.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Balci, S.

Ballarini, D.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Beaur, L.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Bellessa, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Benoit, J. M.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Benoit, J.-M.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Bianco, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Bibic, N.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Bogdanovic, U.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Bouhelier, A.

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Bricks, J. L.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Brioude, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Bröring, M.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Cambril, E.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Carlos, L. D.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Chen, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Chen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Chevrier, K.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Chubich, D. A.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Chuntonov, L.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Cohn, B.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Cuscuná, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

D’Agostino, S.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

De Giorgi, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

De Marco, L.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

DeLacy, B. G.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Demchenko, A. P.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Deng, Q.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Deng, S.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Deng, Z.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Ditcovski, R.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Dominici, L.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Dramicanin, M.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Eizner, E.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Ellenbogen, T.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Engelman, B.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Esposito, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Fan, Z.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Felbacq, D.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Fernández-Domínguez, A. I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Fountain, A. W.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Frasconi, M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Gajic, R.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Gigli, G.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Goldner, A.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Goncharov, S.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Govorov, A. O.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Hao, Z.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Haran, G.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Hestand, N. J.

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

Hranisavljevic, J.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Hsu, C. W.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Hu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Iatì, M. A.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Isic, G.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Jiang, N.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

Joannopoulos, J. D.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Johansson, G.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johansson, P.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johnson, S. G.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Julián-López, B.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Kaiser, T. E.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Käll, M.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Kometani, N.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Kondorskiy, A. D.

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Krivenkov, V.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Krivobok, V. S.

Laban, B.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Lacey, S.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Laverdant, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Lazovic, V. M.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Lebedev, V. S.

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Lemaitre, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Lemmens, P.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Li, X.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Lin, H.-Q.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Liu, B.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Liu, F.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Maragò, O. M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Medvedev, A. S.

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Melnikau, D.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Miller, O. D.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Milonjic, S.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Nabiev, I.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Nekrasov, A. D.

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Nitzan, A.

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Nordlander, P.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Panas, I. D.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Paparone, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Parola, S.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Pilot, R.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Qiu, W.

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Rakovich, Y. P.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Ralevic, U.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Ramezani, M.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Rivas, J. G.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Rodarte, A. L.

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

Rogach, A. L.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Saha-Möller, C. R.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Sala, F. D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Sanchez, C.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Sanvitto, D.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Savateeva, D.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Schilling, M.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Shapiro, B. I.

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

She, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Shegai, T.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Slominskii, Y. L.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Soljacic, M.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Song, Y.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Sovilj, S. P.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Spano, F. C.

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

Stosch, R.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Sukharev, M.

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Sun, J.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Susha, A.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Symonds, C.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Tao, A. R.

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

Tarantini, I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Todisco, F.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Tyshkunova, E. S.

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

Uchida, N.

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Valdes, E.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Valvin, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Vasic, V.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Vasil’ev, D. N.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Vignoli, S.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Viste, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Vitukhnovsky, A. G.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Vodnik, V.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

Vujacic, A.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Vynck, K.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Wang, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wang, J.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Wang, Q.-Q.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wiederrecht, G. P.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Wolfram, B.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Woo, K. C.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Würthner, F.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Wurtz, G. A.

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Xu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Xu, N.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Yagloski, R.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Yan, H.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Yoshida, A.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Zander, Z.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Zengin, G.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Zhang, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Zhang, S.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Zhang, Y.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Zheng, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Zhou, L.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Zhuang, C.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Zhuo, X.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

Zizzari, A.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

ACS Nano (3)

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

ACS Photonics (3)

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Adv. Funct. Mater. (1)

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Adv. Opt. Mater. (1)

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Chem. Phys. Lett. (1)

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

Chem. Rev. (4)

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

Electronics (1)

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Phys. Chem. B (2)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

J. Phys. Chem. C (5)

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

J. Phys. Condens. Matter (2)

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Langmuir (1)

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Materials Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Methods Appl. Fluoresc. (1)

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Nano Lett. (8)

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Nanocomposites, Nano Lett. (1)

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Nanotechnology (1)

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Nature Commun. (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Opt. Express (2)

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Quantum Electron. (5)

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Sci. Rep. (1)

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of plexcitonic dimers under study. (a)–(c) dimers consisting of spherical metal/J-aggregate nanoparticles; R is the radius of the silver core, s is the thickness of J-aggregate shell, and L is the distance between the centers of particles. (d)–(f) the illumination schemes used in calculations of the absorption (d) and the dark-field scattering (e, f) spectra of metal/J-aggregate nanodisk dimers placed onto the substrate.
Fig. 2
Fig. 2 Wavelength dependences of light absorption cross sections by a plasmonic Agnanoparticle dimer and by a plexcitonic dimer consisting of silver nanospheres coated with TDBC-dye J-aggregate. The cross sections are averaged over the polarizations of the incident light. Results are presented for interparticle distances, L, ranging from 14 nm to 26 nm (see Figs. 2(a)–2(g)), and for LR (see Fig. 2(h)). Full blue curves (A) – data for Ag NP dimer. Full black curves (B) – data for Ag/TDBC NP dimer. Dashed red curves (C) – data for Ag/TDBC NP dimer reconstructed using the coupled oscillator model (see Sect. 3.2). Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (λJ = 587.6 nm). Label of pi – indicates the ith-peak of the “plasmonic” resonance of Ag NP dimer; oi and ri – show the positions of the plexcitonic peaks, associated with the “original” and “replica” bands of the Ag/TDBC NP dimer; and si – refers to its J-aggregate “shell” resonance.
Fig. 3
Fig. 3 Absorption cross sections of a plexcitonic Ag/TDBC NP dimer as functions of the photon energy, , for two different polarizations of light along its X and Y axis, see Fig. 1(a). The interparticle distances are L = 18 nm (left column) and L = 22 nm (right column). Figures 3(a), 3(c) and 3(b), 3(d) – results obtained for light polarization parallel and perpendicular to the line connecting the nanoparticle centers, respectively. Full black curves – calculations using the FDTD-method. Dashed red curves – data reconstructed using the coupled oscillator model. Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (J = 2.11 eV). Notations oi, ri, and si are the same as in Figs. 2(a)–2(h). They are supplemented by indices X and Y to distinguish different directions of light polarization.
Fig. 4
Fig. 4 Frequencies (a)–(c) of the absorption peaks of plexcitonic bands of the Ag/TDBC NP dimer and the corresponding Rabi frequencies (d) of the coupled plexcitonic bands as functions of the interparticle distance, L. Curves in Figs. 4(a) and 4(b) were calculated for light polarization along the line connecting the nanoparticle centers (the X-axis in Fig. 1(a)), while curves in Fig. 4(c) – for light polarization perpendicular to this line (the Y-axis in Fig. 1(a)). The band notations oi, ri, and si are the same as in Figs. 3(a)–3(d). Notations of curves in Fig. 4(d) indicate those spectral bands, oi − ri, that are coupled by the plexcitonic interaction. Figures 4(e) and 4(f) represent the absorption spectra of dimers, in which silver cores of nanoparticles have been replaced by the optically passive medium with a dielectric constant equal to ε J .
Fig. 5
Fig. 5 Electromagnetic energy density distributions in the XZ plane passing through the centers of Ag/J-aggregate nanoparticle dimer (see Fig. 1(a)). Calculations were performed for wavelengths corresponding to the centers of the absorption spectral bands presented in Figs. 2(c) and 3(a)–3(b) for the interparticle distance L = 18 nm. Light polarization is parallel to the X-axis. The color maps represent electromagnetic energy density in the logarithmic scale.
Fig. 6
Fig. 6 (a) – Schematic view of hybrid disk-like nanoparticle placed onto a glass substrate; R and h are the radius and height of a silver core; s is the thickness of J-aggregate shell of TDBC-dye. (b) – Extinction coefficient of bare silver nanodisk located on a glass substrate: dashed-dotted green curve – experimental data from [27]; full black curve – results of calculations obtained using the FDTD-method. (c) – Extinction coefficient of Ag/J-aggregate nanodisk located on a glass substrate: dashed-dotted green curve (A) – experimental data from [27]; full yellow curve (B) – results of calculations obtained using the FDTD-method; dotted blue curve (C) – absorption coefficient of the TDBC-dye J-aggregate; full black curve (D) – sum of the extinction coefficients from the nanodisk on the substrate and from the TDBC-dye J-aggregate (curves (B) and (C), respectively); dashed red curve (E) – results of FDTD calculations reconstructed using the coupled oscillator model.
Fig. 7
Fig. 7 (a) – Schematic view of a plexcitonic dimer, consisting of Ag/J-aggregate nanodisks, in the presence of a contact between silver cores. (b) – Comparison of the computed dark-field scattering spectra of the bare Ag nanodisk dimer with the experimental data: dashed-dotted green curve is the experimental curve C from Fig. 9 of [36]; full black curve – the computed dark-field scattering spectra. (c) – Present calculations of the dark-field scattering spectra of the silver nanodisk dimer coated with the J-aggregate of TDBC-dye. (d) – Total extinction cross sections of the Ag/TDBC nanodisk dimer. In Figs. 7(c) and 7(d) full blue curve (A) – computed spectra for plasmonic (Ag ND) dimer; full black curve (B) – spectra for Ag/TDBC ND dimer obtained using the FDTD-method; dashed red curve (C) – spectra reconstruction on the basis of the coupled oscillator model (see Sect. 3.2).
Fig. 8
Fig. 8 Same as in Figs. 7(a)–7(d) for the nanodisk dimers with fully separated silver cores. Dashed-dotted green curve in Fig. 8(b) is the experimental curve D from Fig. 9 of [36].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε J ( ω ) = ε J + f J ω J 2 ω J 2 ω 2 i ω γ J .
H = ( E ( pl ) V V E ( ex ) ) , E ( pl ) = ( ω ( pl ) i γ ( pl ) 2 ) , E ( ex ) = ( ω ( ex ) i γ ( ex ) 2 ) , V = Ω 2 .
H = ( E 1 ( pl ) 0 0 V 1 0 0 0 0 0 E 2 ( pl ) 0 0 V 2 0 0 0 0 0 E N ( pl ) 0 0 V N 0 0 V 1 0 0 E 1 ( ex ) 0 0 0 0 0 V 2 0 0 E 2 ( ex ) 0 0 0 0 0 V N 0 0 E N ( ex ) 0 0 0 0 0 0 0 0 E N + 1 ( ex ) 0 0 0 0 0 0 0 0 0 E N + P ( ex ) ) .
E n ( pl ) = ( ω n ( pl ) i γ n ( pl ) / 2 ) , E k ( ex ) = ( ω k ( ex ) i γ k ( ex ) / 2 ) , V n = Ω n / 2 ,
σ ( ω ) = n A n π ( γ n / 2 ) ( ω ω n ) 2 + ( γ n / 2 ) 2 .

Metrics