B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).

[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).

[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).

[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).

[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).

[Crossref]

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).

[Crossref]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).

[Crossref]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).

[Crossref]
[PubMed]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).

[Crossref]
[PubMed]

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).

[Crossref]
[PubMed]

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).

[Crossref]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).

[Crossref]

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).

[Crossref]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).

[Crossref]

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).

[Crossref]

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).

[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).

[Crossref]

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).

[Crossref]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).

[Crossref]

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).

[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).

[Crossref]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).

[Crossref]
[PubMed]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).

[Crossref]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).

[Crossref]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).

[Crossref]
[PubMed]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).

[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).

[Crossref]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).

[Crossref]

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).

[Crossref]

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).

[Crossref]

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).

[Crossref]

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).

[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).

[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).

[Crossref]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).

[Crossref]

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).

[Crossref]
[PubMed]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).

[Crossref]
[PubMed]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).

[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).

[Crossref]

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).

[Crossref]

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).

[Crossref]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).

[Crossref]

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).

[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).

[Crossref]

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).

[Crossref]
[PubMed]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).

[Crossref]

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).

[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).

[Crossref]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).

[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).

[Crossref]
[PubMed]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).

[Crossref]
[PubMed]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).

[Crossref]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).

[Crossref]

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).

[Crossref]

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).

[Crossref]

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).

[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).

[Crossref]
[PubMed]

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).

[Crossref]
[PubMed]

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).

[Crossref]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).

[Crossref]
[PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).

[Crossref]
[PubMed]

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).

[Crossref]

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).

[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).

[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).

[Crossref]

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).

[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).

[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).

[Crossref]

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).

[Crossref]

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).

[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).

[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).

[Crossref]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).

[Crossref]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).

[Crossref]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).

[Crossref]
[PubMed]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).

[Crossref]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).

[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).

[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. I. Mishchenko, A. A. Lacis, and L. D. Travis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

J. R. Howell, M. P. Mengüç, and S. D. Robert Siegel, Thermal Radiation Heat Transfer (CRC Press, 2010).

V. P. Tishkovets and E. V. Petrova, Light Scattering Reviews 7: Light scattering by densely packed systems of particles: near-field effects (Springer, 2013).

E. D. Palik, Handbook of optical constants of solids (Academic, 1985).