Abstract

Noble metal nanoparticle clusters show unique light absorption and catalysis properties, which have been widely used in the application of photocatalysis, optoelectronics, biomedical optics and so on. The absorption cross section of densely packed nanoparticle clusters, which can be enhanced or restricted due to the near field effects needs to be studied thoroughly. In this work, focusing on Au nanoparticle at the localized plasmon resonance wavelength, the effects of monomer diameter D, monomer number N, particle volume fraction Fv and complex refractive index m on the nondimensional absorption cross section η = Cabs,total/(N·Cabs) (normalized by N and the absorption cross section Cabs of a single particle) of densely packed nanoparticle clusters are studied by using the superposition T-matrix method. It is found that the enhancement (η > 1) and restriction (η < 1) mechanisms of the absorption cross section of nanoparticle clusters are determined by two competing factors (i.e. the multiple scattering and shielding effect), and the extent of these two mechanisms is mainly dependent on the monomer size parameter and the monomer number. The effect of the particle volume fraction on the nondimensional absorption cross section of nanoparticle clusters is totally different in different mechanisms. Specifically, the nondimensional absorption cross section peaks at the particle volume fraction of about 50% in the enhancement mechanism (in our calculation: D < 14 nm, N = 100), while in the restriction mechanism it decreases monotonously with increasing particle volume fraction. Moreover, the absorption efficiency of nanoparticle clusters with more absorptive monomer decreases more sharply with increasing particle volume fraction. The complex refractive index of particle shows significant effects on the nondimensional absorption cross section of nanoparticle clusters, and the largest nondimensional absorption cross section of nanoparticle clusters (N = 100) is larger than 8.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scattering of electromagnetic waves by a cluster of charged spherical nanoparticles

Mahdiyeh Sadrara and MirFaez Miri
J. Opt. Soc. Am. B 33(12) 2552-2559 (2016)

Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects

Kirk A. Fuller and David D. Smith
Opt. Express 15(6) 3575-3580 (2007)

Radiative properties of dense nanofluids

Wei Wei, Andrei G. Fedorov, Zhongyang Luo, and Mingjiang Ni
Appl. Opt. 51(25) 6159-6171 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).
  2. O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).
  3. B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
    [Crossref]
  4. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
    [Crossref]
  5. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  6. M. I. Mishchenko, A. A. Lacis, and L. D. Travis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  7. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  8. X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
    [Crossref] [PubMed]
  9. Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).
    [Crossref] [PubMed]
  10. J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
    [Crossref]
  11. B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
    [Crossref] [PubMed]
  12. J. R. Howell, M. P. Mengüç, and S. D. Robert Siegel, Thermal Radiation Heat Transfer (CRC Press, 2010).
  13. M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).
    [Crossref]
  14. S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).
    [Crossref]
  15. Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
    [Crossref]
  16. G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
    [Crossref]
  17. G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).
    [Crossref]
  18. L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
    [Crossref]
  19. J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
    [Crossref]
  20. F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).
    [Crossref]
  21. F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
    [Crossref]
  22. J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
    [Crossref]
  23. V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
    [Crossref]
  24. V. P. Tishkovets and E. V. Petrova, Light Scattering Reviews 7: Light scattering by densely packed systems of particles: near-field effects (Springer, 2013).
  25. L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
    [Crossref]
  26. L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
    [Crossref]
  27. Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).
    [Crossref]
  28. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
    [Crossref] [PubMed]
  29. J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).
    [Crossref] [PubMed]
  30. D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).
    [Crossref]
  31. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
    [Crossref]
  32. E. D. Palik, Handbook of optical constants of solids (Academic, 1985).
  33. C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
    [Crossref]
  34. J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
    [Crossref]
  35. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
    [Crossref]
  36. Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).
    [Crossref]

2018 (2)

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

2017 (2)

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

2015 (2)

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

2014 (1)

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).
[Crossref]

2013 (2)

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

2011 (3)

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
[Crossref]

2010 (2)

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).
[Crossref]

2009 (2)

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).
[Crossref]

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

2008 (3)

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
[Crossref]

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).
[Crossref] [PubMed]

2006 (1)

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

2003 (1)

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).
[Crossref] [PubMed]

2002 (1)

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
[Crossref] [PubMed]

2000 (1)

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
[Crossref]

1999 (2)

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).
[Crossref]

1996 (1)

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).
[Crossref]

1994 (1)

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

1992 (1)

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).
[Crossref]

1990 (2)

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).
[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
[Crossref]

Al-Nimr, M. A.

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).
[Crossref]

Andrade, R.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

Arnott, W. P.

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
[Crossref]

Arpaci, V. S.

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).
[Crossref]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Birgin, E. G.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

Boal, A. K.

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
[Crossref] [PubMed]

Bohren, C. F.

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Burda, C.

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

Coppalle, A.

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Cui, X.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Dong, J.

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
[Crossref]

El-Sayed, M. A.

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

Eshghi, A. T.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

Frankamp, B. L.

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
[Crossref] [PubMed]

Fuller, K. A.

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Girasole, T.

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Green, T. C.

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

Hartland, G. V.

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
[Crossref]

Henglein, A.

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
[Crossref]

Hodak, J. H.

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
[Crossref]

Ivezic, Z.

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).
[Crossref]

Kalogirou, S. A.

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Kasaeian, A.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

Khlebtsov, B.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Khlebtsov, N.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Kianifar, A.

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Kokhanovsky, A. A.

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).
[Crossref]

Kumar, S.

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).
[Crossref]

Lee, J.

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
[Crossref]

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
[Crossref]

Ling, S.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Link, S.

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

Liu, B.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Liu, F.

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).
[Crossref]

Liu, L.

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
[Crossref]

Liu, L. H.

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
[Crossref]

Long, R.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Ma, L. X.

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

Ma, Y.

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
[Crossref]

Mackowski, D. W.

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

Mahian, O.

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Martínez, J. M.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).
[Crossref] [PubMed]

Martínez, L.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).
[Crossref] [PubMed]

Méès, L.

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Melnikov, A.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Mengüç, M. P.

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).
[Crossref]

Mishchenko, M. I.

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
[Crossref]

Mountain, R. D.

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).
[Crossref]

Mulholland, G. W.

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).
[Crossref]

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Okada, Y.

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).
[Crossref]

Petrova, E. V.

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
[Crossref]

Pop, S. W. I.

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Rotello, V. M.

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
[Crossref] [PubMed]

Rozé, C.

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Sameti, M.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

Smallwood, G. J.

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).
[Crossref]

Snelling, D. R.

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

Tan, J. Y.

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

Tien, C. L.

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).
[Crossref]

Tishkovets, V. P.

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
[Crossref]

Tuchin, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Varadan, V. K.

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
[Crossref]

Varadan, V. V.

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
[Crossref]

Wang, C. A.

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

Wang, F. Q.

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

Wang, J.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Wang, Y. Y.

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

Wong, C.

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

Xie, B. W.

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

Xiong, Y.

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

Yon, J.

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Zeng, H. C.

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).
[Crossref] [PubMed]

Zhang, Y. X.

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).
[Crossref] [PubMed]

Zhao, J. M.

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
[Crossref]

Zharov, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Zhou, H.

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
[Crossref]

Aerosol Sci. Technol. (1)

F. Liu, C. Wong, D. R. Snelling, and G. J. Smallwood, “Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM,” Aerosol Sci. Technol. 47(12), 1393–1405 (2013).
[Crossref]

Combust. Flame (1)

G. W. Mulholland and R. D. Mountain, “Couple dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates,” Combust. Flame 119(1-2), 56–68 (1999).
[Crossref]

Int. J. Heat Mass Transf. (2)

O. Mahian, A. Kianifar, S. A. Kalogirou, and S. W. I. Pop, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf. 57, 582–594 (2013).

Z. Ivezić and M. P. Mengüç, “An investigation of dependent/independent scattering regimes using a discrete dipole approximation,” Int. J. Heat Mass Transf. 39(4), 811–822 (1996).
[Crossref]

J. Am. Chem. Soc. (2)

X. Cui, J. Wang, B. Liu, S. Ling, R. Long, and Y. Xiong, “Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands,” J. Am. Chem. Soc. 140(48), 16514–16520 (2018).
[Crossref] [PubMed]

B. L. Frankamp, A. K. Boal, and V. M. Rotello, “Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers,” J. Am. Chem. Soc. 124(51), 15146–15147 (2002).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. H. Hodak, A. Henglein, and G. V. Hartland, “Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles,” J. Chem. Phys. 112(13), 5942–5947 (2000).
[Crossref]

J. Comput. Chem. (2)

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “Packmol: A package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem. 30(13), 2157–2164 (2009).
[Crossref] [PubMed]

J. M. Martínez and L. Martínez, “Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking,” J. Comput. Chem. 24(7), 819–825 (2003).
[Crossref] [PubMed]

J. Heat Transfer (3)

M. A. Al-Nimr and V. S. Arpaci, “Radiative properties of interacting particles,” J. Heat Transfer 114(4), 950–957 (1992).
[Crossref]

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112(1), 178–185 (1990).
[Crossref]

Y. Ma, V. K. Varadan, and V. V. Varadan, “Enhanced Absorption Due to Dependent Scattering,” J. Heat Transfer 112(2), 402–407 (1990).
[Crossref]

J. Mater. Chem. (1)

J. Lee, H. Zhou, and J. Lee, “Small molecule induced self-assembly of Au nanoparticles,” J. Mater. Chem. 21(42), 16935–16942 (2011).
[Crossref]

J. Phys. Chem. B (1)

C. Burda, T. C. Green, S. Link, and M. A. El-Sayed, “Electron Shuttling Across the Interface of CdSe Nanoparticles Monitored by Femtosecond Laser Spectroscopy,” J. Phys. Chem. B 103(11), 1783–1788 (1999).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (10)

F. Liu and G. J. Smallwood, “Effect of aggregation on the absorption cross-section of fractal soot aggregates and its impact on LII modelling,” J. Quant. Spectrosc. Radiat. Transf. 111(2), 302–308 (2010).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, and C. A. Wang, “Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory,” J. Quant. Spectrosc. Radiat. Transf. 187, 255–266 (2017).
[Crossref]

L. X. Ma, J. Y. Tan, J. M. Zhao, F. Q. Wang, C. A. Wang, and Y. Y. Wang, “Dependent scattering and absorption by densely packed discrete spherical particles: Effects of complex refractive index,” J. Quant. Spectrosc. Radiat. Transf. 196, 94–102 (2017).
[Crossref]

Y. Okada and A. A. Kokhanovsky, “Light scattering and absorption by densely packed groups of spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 902–917 (2009).
[Crossref]

D. W. Mackowski, “A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media,” J. Quant. Spectrosc. Radiat. Transf. 133, 264–270 (2014).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T -matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2182–2192 (2011).
[Crossref]

J. Dong, J. M. Zhao, and L. H. Liu, “Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate,” J. Quant. Spectrosc. Radiat. Transf. 165, 43–55 (2015).
[Crossref]

V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, “Scattering of electromagnetic waves by ensembles of particles and discrete random media,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2095–2127 (2011).
[Crossref]

B. W. Xie, J. Dong, J. M. Zhao, and L. H. Liu, “Radiative properties of hedgehog-like ZnO-Au composite particles with applications to photocatalysis,” J. Quant. Spectrosc. Radiat. Transf. 217, 1–12 (2018).
[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656–2663 (2008).
[Crossref]

Langmuir (2)

G. W. Mulholland, C. F. Bohren, and K. A. Fuller, “Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method,” Langmuir 10(8), 2533–2546 (1994).
[Crossref]

Y. X. Zhang and H. C. Zeng, “Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures,” Langmuir 24(8), 3740–3746 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[Crossref]

Part. Part. Syst. Charact. (1)

J. Yon, C. Rozé, T. Girasole, A. Coppalle, and L. Méès, “Extension of RDG-FA for Scattering Prediction of Aggregates of Soot Taking into Account Interactions of Large Monomers,” Part. Part. Syst. Charact. 25(1), 54–67 (2008).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Green’s function approach,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165424 (2010).
[Crossref]

Renewable and Sustainable Energy Reviews. (1)

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renewable and Sustainable Energy Reviews. 43, 584–598 (2015).

Other (6)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. I. Mishchenko, A. A. Lacis, and L. D. Travis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

J. R. Howell, M. P. Mengüç, and S. D. Robert Siegel, Thermal Radiation Heat Transfer (CRC Press, 2010).

V. P. Tishkovets and E. V. Petrova, Light Scattering Reviews 7: Light scattering by densely packed systems of particles: near-field effects (Springer, 2013).

E. D. Palik, Handbook of optical constants of solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Spherical particle target sample used in MSTM computation: (a) Fv = 20%; (b) Fv = 40%; (c) Fv = 60%. The monomer number N is 100.
Fig. 2
Fig. 2 (a) The nondimensional absorption cross section of nanoparticle clusters with different expansion order of vector spherical wave function for each sphere, the volume fraction is 50% and the complex refractive index of particle is m = 0.58 + 2.18i. (b) The spectral absorption efficiency of Au nanoparticle clusters in the spectral range from 300 to 800 nm with different expansion order of vector spherical wave function for each sphere, the volume fraction is 50% and the monomer diameter is 10 nm. (c-d) The nondimensional absorption cross section of nanoparticle clusters with different complex refractive index as a function of expansion order.
Fig. 3
Fig. 3 The complex refractive index of Au [32].
Fig. 4
Fig. 4 The nondimensional absorption cross section η = Cabs,total/(N·Cabs) of nanoparticle clusters with different particle volume fractions Fv as a function of monomer diameter D. The monomer number N is 100, and the complex refractive index of particle is m = 0.58 + 2.18i.
Fig. 5
Fig. 5 The normalized electric field intensity |E/E0|2 of nanoparticle clusters with monomer diameter of (a) 10 nm and (b) 40 nm, the monomer number N is 100 and the particle volume fraction Fv is 50%. E0 is the incident electric field intensity.
Fig. 6
Fig. 6 The nondimensional absorption cross section η = Cabs,total/(N·Cabs) of nanoparticle clusters with monomer diameter of 10 nm and 40 nm as a function of particle volume fraction Fv. The monomer number N is 100, and the complex refractive index of particle is m = 0.58 + 2.18i.
Fig. 7
Fig. 7 The nondimensional absorption cross section η = Cabs,total/(N·Cabs) of nanoparticle clusters with different monomer numbers N as a function of monomer diameter D. The particle volume fraction Fv is 50%, and the complex refractive index of particle is m = 0.58 + 2.18i.
Fig. 8
Fig. 8 The spectral absorption efficiency Qabs of Au nanoparticle clusters with different particle volume fractions Fv, the monomer number N is equal to 100.
Fig. 9
Fig. 9 The nondimensional absorption cross section η = Cabs,total/(N·Cabs) of nanoparticle clusters as a function of complex refractive index with the monomer size parameter x = 0.01, 0.1 0.5 and 1, respectively. The monomer number N = 100 and the particle volume fraction Fv is 50%. The line inside is the contour line of the nondimensional absorption cross section with value of 1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F v = N D 3 8 R 3
C abs,i = 2π k 2 n=1 Li m=n n p=1 2 b np,i | a mnp,i | 2
C abs,total = i=1 N C abs,i
η= C abs,total C abs N
Q abs = 4 C abs,total Nπ D 2

Metrics