Abstract

An alternative structure to planar CdTe solar cells is realized by coating ZnO/CdS nanorods (NRs) with a CdTe layer. These structures are expected to achieve high-powered conversion efficiencies through enhanced light absorption and charge carrier collection. ZnO NR-based CdTe solar cell efficiencies; however, they have remained well below their planar counterparts, thus hindering NRs in CdTe solar cells’ advantages. Here, we analyze the light trapping and carrier collection efficiencies in two types of ZnO NR-based CdTe solar cells through optical and electrical simulations. The buried CdTe solar cells are formed by completely filling the gaps in between ZnO/CdS NRs. This produces a maximum achievable photo-current of 27.4 mA/cm2 when 2000 nm-tall and 20̊-angularly-deviated NRs are used. A short-circuit current density of 27.3 mA/cm2 is achievable with the same geometry for 5 rods/μm2-dense NRs when a moderate CdTe doping density and a CdS/CdTe surface velocity of 1016 cm−3 and 104 cm/s are used, respectively. We reveal the potential of buried CdTe solar cell for high-charge carrier collection and provide a design guideline in order to achieve high short-circuit current densities with ZnO NR-based CdTe solar cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector

Saeed Khosroabadi and Seyyed Hossein Keshmiri
Opt. Express 22(S3) A921-A929 (2014)

Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells

Jérôme Michallon, Davide Bucci, Alain Morand, Mauro Zanuccoli, Vincent Consonni, and Anne Kaminski-Cachopo
Opt. Express 22(S4) A1174-A1189 (2014)

Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact

Yongbeom Kwon, Jaeyoung Seo, Yoonmook Kang, Donghwan Kim, and Jihyun Kim
Opt. Express 26(2) A30-A38 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
    [Crossref]
  2. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
    [Crossref]
  3. ISE Fraunhofer: Photovoltaics Report, updated 19 June 2018.
  4. V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
    [Crossref] [PubMed]
  5. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
    [Crossref] [PubMed]
  6. X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
    [Crossref]
  7. G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
    [Crossref]
  8. M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
    [Crossref] [PubMed]
  9. G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurang, S. Yerci, H. E. Unalan, V. Barrioz, Y. Qu, L. Bowen, A. K. Gürlek, P. Maiello, R. Turan, and S. J. C. Irvine, “Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays,” Sol. Energy Mater. Sol. Cells 176(November 2017), 100–108 (2018).
  10. J. D. Major, R. Tena-Zaera, E. Azaceta, and K. Durose, “ZnO nanowire radial CdTe solar cells,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp. 1–4.
    [Crossref]
  11. R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
    [Crossref]
  12. R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
    [Crossref]
  13. J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
    [Crossref] [PubMed]
  14. J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
    [Crossref] [PubMed]
  15. R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
    [Crossref]
  16. T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
    [Crossref] [PubMed]
  17. L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
    [Crossref] [PubMed]
  18. Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
    [Crossref]
  19. M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
    [Crossref]
  20. A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
    [Crossref]
  21. Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .
  22. T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
    [Crossref] [PubMed]
  23. Z. Holman, unpublished data, retrieved from https://www2.pvlighthouse.com.au on 17/11/2017.
  24. R. E. T. and A. S.-P. and K. D. and K. H. and S. R. andD. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. Conf. Ser. 286(1), 12038 (2011).
  25. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  26. M. Szczurowski, unpublished data, retrieved from https://refractiveindex.info on 17/11/2017.
  27. “Atlas User’s Manual.” www.silvaco.com .
  28. M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
    [Crossref]
  29. M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings” (2003), 1(1), p. 491–494.
  30. M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
    [Crossref]
  31. T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
    [Crossref]
  32. B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
    [Crossref]
  33. A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics 1(1), 99–103 (2011).
    [Crossref]

2018 (1)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

2017 (1)

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

2016 (1)

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

2015 (2)

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

2014 (4)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

2013 (2)

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

2012 (2)

M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
[Crossref]

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

2011 (2)

R. E. T. and A. S.-P. and K. D. and K. H. and S. R. andD. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. Conf. Ser. 286(1), 12038 (2011).

A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics 1(1), 99–103 (2011).
[Crossref]

2010 (3)

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
[Crossref]

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

2009 (1)

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

2008 (2)

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[Crossref]

2007 (1)

S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
[Crossref]

2000 (1)

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
[Crossref]

1999 (1)

M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
[Crossref]

1998 (1)

T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
[Crossref]

Ablekim, T.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Agert, C.

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

Akgun, M. C.

M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
[Crossref]

Allsop, N.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Ambacher, O.

S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
[Crossref]

Appert, E.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Artús, L.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Barnes, T. M.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Bawendi, M. G.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Bechstedt, F.

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Becker, J.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Belaidi, A.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Blösch, P.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Boccard, M.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Brown, P. R.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Bucci, D.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

Buecheler, S.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Bulovic, V.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Burgelman, M.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
[Crossref]

M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
[Crossref]

Burst, J.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Cai, H.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Campbell, C. M.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Cao, X.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Chang, S.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Cheah, E.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Chen, P.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Chen, X.-Y.

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

Cheng, J. J.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Chirila, A.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Consonni, V.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Degrave, S.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
[Crossref]

M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
[Crossref]

Dittrich, T.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Du, X.-W.

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

Dunlop, E. D.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Elias, J.

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[Crossref]

El-Sayed, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Fahrenbruch, A. L.

M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings” (2003), 1(1), p. 491–494.

Fan, Z.

R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
[Crossref]

Fella, C. M.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Fraunhofer, ISE

ISE Fraunhofer: Photovoltaics Report, updated 19 June 2018.

Fuchs, F.

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Gao, Z.-M.

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

Garnier, J.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Gavrilov, S.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Gergaud, P.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Gessert, T. A.

A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics 1(1), 99–103 (2011).
[Crossref]

Gloeckler, M.

M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings” (2003), 1(1), p. 491–494.

Gobsch, G.

S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
[Crossref]

Gradecak, S.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Gretener, C.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Guo, Y.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Hagendorfer, H.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Hark, S.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Hishikawa, Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Ho-Baillie, A. W. Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Höffling, B.

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Hohl-Ebinger, J.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Holman, Z.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jäger, T.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Javey, A.

R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jean, J.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Jiang, S.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Jin, M.-J.

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

Kalay, Y. E.

M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
[Crossref]

Kaminski-Cachopo, A.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Kanevce, A.

A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics 1(1), 99–103 (2011).
[Crossref]

Kapadia, R.

R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
[Crossref]

Kerszulis, J.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kieven, D.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

König, T. A. F.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kranz, L.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kuciauskas, D.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Kunst, M.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

La Mattina, F.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Lane, D.

R. E. T. and A. S.-P. and K. D. and K. H. and S. R. andD. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. Conf. Ser. 286(1), 12038 (2011).

Lassise, M. B.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Ledin, P. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Levi, D. H.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Lévy-Clément, C.

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[Crossref]

Li, Q.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Lin, Y.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Ling, T.

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

Liu, S.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Luo, Y.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Lux-Steiner, M.-C.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Lynn, K. G.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Mahmoud, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Michallon, J.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Minami, T.

T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
[Crossref]

Miyata, T.

T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
[Crossref]

Morand, A.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

Nishiwaki, S.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Nollet, P.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
[Crossref]

M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Nowak, R.-E.

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

Pan, N.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Perrenoud, J.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Pianezzi, F.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Rapenne, L.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Rekemeyer, P. H.

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Ren, W.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Renet, S.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Reynolds, J. R.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Rödl, C.

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Schleife, A.

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Schmitt, R.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Schwarzburg, K.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Sergeev, O.

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

Shokhovets, S.

S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
[Crossref]

Sites, J. R.

M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings” (2003), 1(1), p. 491–494.

Suarez, E.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Swain, S. K.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Tao, Y.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Tena-Zaera, R.

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[Crossref]

Tiwari, A. N.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Tornow, J.

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Tsukruk, V. V.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Uhl, A. R.

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Unalan, H. E.

M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
[Crossref]

Vehse, M.

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

von Maydell, K.

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

Wang, H.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Wang, X.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Wei, S.-H.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Wu, Y.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Xiao, X.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Xu, Y.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

Yamamoto, T.

T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
[Crossref]

Yin, W.-J.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Zanuccoli, M.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

Zaunbrecher, K.

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Zhang, G.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Zhang, Q.

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

Zhang, Y.-H.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Zhao, X.-H.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Zhu, H.

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

ACS Nano (2)

X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, “Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties,” ACS Nano 4(6), 3302–3308 (2010).
[Crossref] [PubMed]

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak, and V. Bulović, “ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells,” Adv. Mater. 25(20), 2790–2796 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[Crossref]

R. Kapadia, Z. Fan, and A. Javey, “Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics,” Appl. Phys. Lett. 96(10), 103116 (2010).
[Crossref]

B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett. 97(3), 32116 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Burgelman, P. Nollet, and S. Degrave, “Electronic behaviour of thin-film CdTe solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 149–153 (1999).
[Crossref]

IEEE J. Photovoltaics (1)

A. Kanevce and T. A. Gessert, “Optimizing CdTe solar cell performance: impact of variations in minority-carrier lifetime and carrier density profile,” IEEE J. Photovoltaics 1(1), 99–103 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

G. Zhang, S. Jiang, Y. Lin, W. Ren, H. Cai, Y. Wu, Q. Zhang, N. Pan, Y. Luo, and X. Wang, “Improving the photovoltaic performance of solid-state ZnO/CdTe core–shell nanorod array solar cells using a thin CdS interfacial layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(16), 5675–5681 (2014).
[Crossref]

J. Mater. Res. (1)

M. C. Akgun, Y. E. Kalay, and H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt,” J. Mater. Res. 27(11), 1445–1451 (2012).
[Crossref]

J. Phys. Chem. C (1)

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

J. Phys. Conf. Ser. (1)

R. E. T. and A. S.-P. and K. D. and K. H. and S. R. andD. Lane, “Optical design and fabrication of fully sputtered CdTe/CdS solar cells,” J. Phys. Conf. Ser. 286(1), 12038 (2011).

Nanoscale Res. Lett. (1)

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús, J. Michallon, L. Rapenne, E. Appert, and A. Kaminski-Cachopo, “Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells,” Nanoscale Res. Lett. 9(1), 222 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

M.-J. Jin, X.-Y. Chen, Z.-M. Gao, T. Ling, and X.-W. Du, “Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating,” Nanotechnology 23(48), 485401 (2012).
[Crossref] [PubMed]

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni, and A. Kaminski-Cachopo, “Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells,” Nanotechnology 26(7), 075401 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blösch, E. Cheah, A. Chirilă, C. M. Fella, H. Hagendorfer, T. Jäger, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, “Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil,” Nat. Commun. 4(1), 2306 (2013).
[Crossref] [PubMed]

Nat. Energy (1)

Y. Zhao, M. Boccard, S. Liu, J. Becker, X.-H. Zhao, C. M. Campbell, E. Suarez, M. B. Lassise, Z. Holman, and Y.-H. Zhang, “Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%,” Nat. Energy 1(6), 16067 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. Shokhovets, O. Ambacher, and G. Gobsch, “Conduction-band dispersion relation and electron effective mass in III-V and II-VI zinc-blende semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 76(12), 125203 (2007).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, and A. W. Y. Ho‐Baillie, “Solar cell efficiency tables (version 52),” Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018).
[Crossref]

Sci. Rep. (1)

T. Ablekim, S. K. Swain, W.-J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S.-H. Wei, and K. G. Lynn, “Self-compensation in arsenic doping of CdTe,” Sci. Rep. 7(1), 4563 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

R.-E. Nowak, M. Vehse, O. Sergeev, K. von Maydell, and C. Agert, “ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 125, 305–309 (2014).
[Crossref]

A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M.-C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93(6–7), 1033–1036 (2009).
[Crossref]

Surf. Coat. Tech. (1)

T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” Surf. Coat. Tech. 108–109, 583–587 (1998).
[Crossref]

Thin Solid Films (1)

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361–362, 527–532 (2000).
[Crossref]

Other (8)

M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003. Proceedings” (2003), 1(1), p. 491–494.

Lumerical Inc, http://www.lumerical.com/tcad-products/fdtd/ .

Z. Holman, unpublished data, retrieved from https://www2.pvlighthouse.com.au on 17/11/2017.

M. Szczurowski, unpublished data, retrieved from https://refractiveindex.info on 17/11/2017.

“Atlas User’s Manual.” www.silvaco.com .

ISE Fraunhofer: Photovoltaics Report, updated 19 June 2018.

G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurang, S. Yerci, H. E. Unalan, V. Barrioz, Y. Qu, L. Bowen, A. K. Gürlek, P. Maiello, R. Turan, and S. J. C. Irvine, “Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays,” Sol. Energy Mater. Sol. Cells 176(November 2017), 100–108 (2018).

J. D. Major, R. Tena-Zaera, E. Azaceta, and K. Durose, “ZnO nanowire radial CdTe solar cells,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of (a) ZnO/CdS NRs prior to CdTe coating, (b) the ETA cell and (c) the buried cell
Fig. 2
Fig. 2 The MAPC of ETA and buried cells for various heights, angular deviations and densities of ZnO NRs.
Fig. 3
Fig. 3 The absorption spectra of CdS (dashed lines) and haze spectra of ZnO/CdS NRs in the absence of CdTe and Au layers (solid lines) at various (a) NR heights for an angular deviation of 10̊ and a 20 rods/μm2 density, (b) angular deviations for a height of 1000 nm and a 20 rods/μm2 density and (c) NR densities for a height of 1000 nm and an angular deviation of 10̊. Inset of (a): The change of equivalent thickness with the NR height. Inset of (b): The absorption in Au for various angular deviations for an ETA cell with 1000 nm-tall and 50 rods/μm2-dense NRs. Inset of (c): The change of equivalent thickness with the NR density.
Fig. 4
Fig. 4 The photo-generation profiles, (G, in log scale) of buried cells with (a) 500 nm-tall and 20 rods/μm2 dense NRs, (b) 2000 nm-tall and 20 rods/μm2-dense NRs and (c) 2000 nm-tall and 50 rods/μm2-dense NRs. The corresponding absorption spectra for cells with (d) 500 nm-tall NRs and 20 rods/μm2 density, (e) 2000 nm-tall and 20 rods/μm2-dense NRs and (f) 2000 nm-tall and 50 rods/μm2-dense NRs. Dashed lines indicate to the band gap of CdS. The MAPC equivalent of total parasitic absorption are given on (d), (e) and (f). The MAPC at shorter and longer wavelengths than the bandgap of CdS are given on the left and right sides of the dashed lines on (d), (e) and (f), respectively.
Fig. 5
Fig. 5 Band bending in CdTe layer of buried cells with 500 nm-tall and 20 rods/μm2-dense NRs for NA of (a) 1015, (b) 1016 and (c) 1017 cm−3. White and green arrows demonstrate the tentative paths of electrons and holes, respectively. White and green circles represent electrons and holes, respectively.
Fig. 6
Fig. 6 Effect of surface recombination velocity at the CdS/CdTe interface on the Jsc for buried cells with 500 nm-tall and 5 rods/μm2, 500 nm-tall and 20 rods/μm2, and 2000 nm-tall and 5 rods/μm2-dense NRs and planar cells with same equivalent thicknesses for NA of (a) 1015 cm−3, (b) 1016 cm−3 and (c) 1017 cm−3.
Fig. 7
Fig. 7 Effect of CdS/CdTe surface recombination velocity on the Jsc for ETA cells with (a) 1000 nm-tall and 5 rods/μm2- and 20 rods/μm2-dense NRs, and (b) 500 nm- and 2000 nm-tall and 20 rods/μm2-dense NRs.

Tables (1)

Tables Icon

Table 1 Equivalent thickness, MAPC, material reduction factors and Jsc for selected buried and ETA cell geometries. The Jsc values are provided for NA of 1016 cm−3 and SF of 104 cm/s. The buried cells have angular deviation of 20̊ and the ETA cells have angular deviation of 0̊.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MAPC= q hc 300nm 850nm λ A CdTe (λ) ϕ i (λ)dλ

Metrics