Abstract

Photoelectrochemical water splitting is one of the viable approaches to produce clean hydrogen energy from water. Herein, we report MoS2/Si-heterojunction (HJ) photocathode for PEC H2 production. The MoS2/Si-HJ photocathode exhibits exceptional PEC H2 production performance with a maximum photocurrent density of 36.33 mA/cm2, open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h of reaction time. The photocurrent density achieved by MoS2/Si-HJ photocathode is significantly higher than most of the MoS2 coupled Si-based photocathodes reported elsewhere, indicating excellent PEC H2 production performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer

Haseong Kim, Hyojung Bae, Seung Wan Bang, Seyoung Kim, Sang Hyun Lee, Sang-Wan Ryu, and Jun-Seok Ha
Opt. Express 27(4) A206-A215 (2019)

Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

Rowena Yew, Siva Krishna Karuturi, Jiaqin Liu, Hark Hoe Tan, Yucheng Wu, and Chennupati Jagadish
Opt. Express 27(2) 761-773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
    [Crossref]
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  3. C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
    [Crossref]
  4. S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
    [Crossref] [PubMed]
  5. A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).
  6. Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).
  7. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
    [Crossref] [PubMed]
  8. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
    [Crossref] [PubMed]
  9. H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
    [Crossref] [PubMed]
  10. Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
    [Crossref]
  11. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
    [Crossref] [PubMed]
  12. D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
    [Crossref]
  13. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
    [Crossref] [PubMed]
  14. J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
    [Crossref] [PubMed]
  15. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
    [Crossref]
  16. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
    [Crossref] [PubMed]
  17. W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
    [Crossref] [PubMed]
  18. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
    [Crossref] [PubMed]
  19. H. Vrubel and X. Hu, “Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions,” Angew. Chem. Int. Ed. Engl. 51(51), 12703–12706 (2012).
    [Crossref] [PubMed]
  20. J. Yang and H. S. Shin, “Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 5979–5985 (2014).
    [Crossref]
  21. A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).
  22. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
    [Crossref]
  23. J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
    [Crossref] [PubMed]
  24. K. O. Davis and W. V. Schoenfeld, “Engineered interfaces using surface and contact passivation in silicon solar cells,” Electrochem. Soc. Interface 27(1), 63–66 (2018).
    [Crossref]
  25. J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
    [Crossref]
  26. Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
    [Crossref] [PubMed]
  27. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
    [Crossref] [PubMed]
  28. F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
    [Crossref]
  29. G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
    [Crossref] [PubMed]
  30. C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
    [Crossref]
  31. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
    [Crossref] [PubMed]
  32. J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
    [Crossref]
  33. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  34. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
    [Crossref] [PubMed]
  35. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
    [Crossref] [PubMed]
  36. Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
    [Crossref] [PubMed]
  37. M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
    [Crossref]
  38. J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
    [Crossref]
  39. D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
    [Crossref] [PubMed]
  40. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
    [Crossref] [PubMed]
  41. Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting: Standards, experimental methods, and protocols (Springer, 2013).
  42. W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).
  43. J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
  44. J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
    [Crossref]
  45. B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
    [Crossref] [PubMed]
  46. L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
    [Crossref]
  47. Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
    [Crossref] [PubMed]
  48. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
    [Crossref]
  49. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
    [Crossref] [PubMed]
  50. D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
    [Crossref] [PubMed]

2019 (2)

A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).

A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).

2018 (3)

K. O. Davis and W. V. Schoenfeld, “Engineered interfaces using surface and contact passivation in silicon solar cells,” Electrochem. Soc. Interface 27(1), 63–66 (2018).
[Crossref]

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

2017 (4)

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

2016 (6)

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

2015 (6)

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

2014 (4)

J. Yang and H. S. Shin, “Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 5979–5985 (2014).
[Crossref]

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

2013 (4)

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

2012 (6)

H. Vrubel and X. Hu, “Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions,” Angew. Chem. Int. Ed. Engl. 51(51), 12703–12706 (2012).
[Crossref] [PubMed]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
[Crossref]

Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
[Crossref]

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

2011 (4)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

2010 (3)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

2007 (1)

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

2006 (1)

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

2004 (1)

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

1999 (1)

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

1995 (1)

J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
[Crossref]

Adzic, R. R.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Ager, J. W.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Al-Amri, A. M.

A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).

Alarawi, A.

A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).

Arenal, R.

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

Asefa, T.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

Atwater, H. A.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Bae, D.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

Baker, M. A.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

Barber, J.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Benck, J. D.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Biacchi, A. J.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

Bierman, M. J.

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

Bittencourt, C.

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

Boettcher, S. W.

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Boix, P.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Bonde, J.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Brito, J. L.

J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
[Crossref]

Brunschwig, B. S.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Bu, X.

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Cabán-Acevedo, M.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Cai, Z.

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Chang, C.-S.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Chang, M.-T.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Chen, H.-Y.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Chen, M.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chen, W. F.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

Chen, W.-F.

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Chen, Y.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Cheng, B.

A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).

Chhowalla, M.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chiam, S. Y.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Choi, S.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Chorkendorff, I.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Dahl, S.

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Dai, S.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Daniel, A. S.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Davis, K. O.

K. O. Davis and W. V. Schoenfeld, “Engineered interfaces using surface and contact passivation in silicon solar cells,” Electrochem. Soc. Interface 27(1), 63–66 (2018).
[Crossref]

Ding, Q.

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Dong, W.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Durrant, J. R.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
[Crossref]

Eda, G.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

English, C. R.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Esswein, A. J.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Fan, R.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Fang, L.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Fang, X.

W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).

Fong, K. D.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Forticaux, A.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Frenkel, A. I.

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Fu, K.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Fujita, T.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Gao, W.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Gilmore, R.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

Gissler, W.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

Gray, H. B.

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

Guo, T.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Guo, Y.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Hamel, J. A.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Hamers, R. J.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Han, M.-Y.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Han, S.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Hansen, O.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

He, J.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

He, J.-H.

A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).

A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).

Heinz, T. F.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hernández, P.

J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
[Crossref]

Hettick, M.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Ho, J. C.

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Hong, K.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Horch, S.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Hu, D.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Hu, X.

H. Vrubel and X. Hu, “Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions,” Angew. Chem. Int. Ed. Engl. 51(51), 12703–12706 (2012).
[Crossref] [PubMed]

Huang, C.-W.

C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
[Crossref]

Huang, M.-Y.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Ilija, M.

J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
[Crossref]

Jang, H. W.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Jaramillo, T. F.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Jarvi, T. D.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Javey, A.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Jeon, J.-M.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Jiang, C.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Jiang, R.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Jie, J.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Jin, M.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Jin, S.

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Jørgensen, K. P.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Kargar, A.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Kelzenberg, M. D.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Kibsgaard, J.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Kim, D. H.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Kim, S. Y.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Kim, T.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Kim, T. W.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Kiriya, D.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Koh, L.-D.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Kuznetsov, A.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

Kwon, K. C.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Lai, C.-S.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Lai, Z.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Lan, F.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Laursen, A. B.

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Lee, C.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, C.-H.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Lee, S. C.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Lee, Y.-H.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Lenardi, C.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

Lewis, N. S.

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Li, F.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Li, H.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Li, L.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Li, L.-J.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Li, P.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Li, Z.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Liang, D.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Liao, C.-H.

C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
[Crossref]

Lin, Y.-C.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Liu, C.

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Liu, J.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Liu, K.-K.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Liu, S.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Liu, X.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Liu, Y.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Liu, Z.-H.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Lobaccaro, P.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Lukowski, M. A.

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Ma, C.

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Maboudian, R.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Malizia, M.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

Mao, J.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Marinkovic, N.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

McKone, J. R.

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Meng, F.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Moniz, S. J. A.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Moon, C. W.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Muckerman, J. T.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Nam, K. T.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Nian, L.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Nielsen, J. H.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Nocera, D. G.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Noh, S. Y.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Nözel, R.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Nyein, H. Y. Y.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Orchard, K. L.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Ouyang, W.

W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).

Pagona, G.

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

Pastor, E.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Pedersen, T.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Pijpers, J. J. H.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Popczun, E. J.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

Putnam, M. C.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Qi, F.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Ramalingam, V.

A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).

Read, C. G.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

Reece, S. Y.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Reisner, E.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Ren, Y.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Resasco, J.

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Reynal, A.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Ryu, S.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Salehi, M.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

Santori, E. A.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Sasaki, K.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

Schaak, R. E.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

Schoenfeld, W. V.

K. O. Davis and W. V. Schoenfeld, “Engineered interfaces using surface and contact passivation in silicon solar cells,” Electrochem. Soc. Interface 27(1), 63–66 (2018).
[Crossref]

Seger, B.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shearer, M. J.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Shen, M.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Shenoy, V. B.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Shim, Y.-S.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Shin, H. S.

J. Yang and H. S. Shin, “Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 5979–5985 (2014).
[Crossref]

Shiraki, H.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Silva, R.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

Sinclair, R.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Sohn, W.

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

Song, B.

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

Su, C.-Y.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Su, S.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Su, X.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Sun, J.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Sun, K.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Sung, K.

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

Sutter-Fella, C. M.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Tachibana, Y.

Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
[Crossref]

Tagmatarchis, N.

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

Taheri, P.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Tang, J.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Tee, S. Y.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Teng, C. P.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Teng, F.

W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).

Teo, W. S.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Tran, P. D.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Tsai, M.-L.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Turner, J. A.

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Turner-Evans, D.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Vayssieres, L.

Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
[Crossref]

Veeramalai, C. P.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Vesborg, P. C. K.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Voiry, D.

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Vrubel, H.

H. Vrubel and X. Hu, “Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions,” Angew. Chem. Int. Ed. Engl. 51(51), 12703–12706 (2012).
[Crossref] [PubMed]

Walter, M. G.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wang, A.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Wang, C.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Wang, C. H.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

Wang, D.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Wang, F.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Wang, F.-B.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Wang, H.-P.

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Wang, J.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Wang, N.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Wang, P.

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Wang, X.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Warren, E. L.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Willkomm, J.

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Wiltrout, A. M.

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

Win, K. Y.

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Wong, A. B.

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Wong, L. H.

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

Wu, J. C. S.

C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
[Crossref]

Xia, X.-H.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Xiang, J.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Xu, H.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Xu, J.-J.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Xu, P.

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

Xu, W.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

Xu, W.-X.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Xu, Y.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Xu, Z.

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Yang, D.-R.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Yang, J.

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

J. Yang and H. S. Shin, “Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 5979–5985 (2014).
[Crossref]

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Yang, P.

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Yin, Z.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Zhang, H.

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Zhang, T.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Zhang, W.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

Zhang, Z.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Zhao, P.

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Zheng, B.

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Zheng, F.

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Zhou, G.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Zhou, Q.

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Zhou, Y.

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

Zhu, Y.

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and stable silicon photocathodes coated with vertically standing nano-MoS2 films for solar hydrogen production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

ACS Nano (2)

Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, and J. Barber, “Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation,” ACS Nano 9(4), 3829–3836 (2015).
[Crossref] [PubMed]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

ACS Sustain. Chem.& Eng. (1)

J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, and R. Jiang, “Metallic-phase MoS2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution,” ACS Sustain. Chem.& Eng. 6(10), 13435–13442 (2018).
[Crossref]

Adv. Energy Mater. (1)

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).

Adv. Sci. (Weinh.) (1)

S. Y. Tee, K. Y. Win, W. S. Teo, L.-D. Koh, S. Liu, C. P. Teng, and M.-Y. Han, “Recent progress in energy-driven water splitting,” Adv. Sci. (Weinh.) 4(5), 1600337 (2017).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets,” Angew. Chem. Int. Ed. Engl. 51(25), 6131–6135 (2012).
[Crossref] [PubMed]

H. Vrubel and X. Hu, “Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions,” Angew. Chem. Int. Ed. Engl. 51(51), 12703–12706 (2012).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Appl. Surf. Sci. (2)

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of s from MoS2 and determination of mosx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150(1-4), 255–262 (1999).
[Crossref]

C. P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, and T. W. Kim, “Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method,” Appl. Surf. Sci. 389, 1017–1022 (2016).
[Crossref]

Catalysts (1)

C.-H. Liao, C.-W. Huang, and J. C. S. Wu, “Hydrogen production from semiconductor-based photocatalysis via water splitting,” Catalysts 2(4), 490–516 (2012).
[Crossref]

Chem (1)

Q. Ding, B. Song, P. Xu, and S. Jin, “Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds,” Chem 1(5), 699–726 (2016).
[Crossref]

Chem. Commun. (Camb.) (1)

G. Pagona, C. Bittencourt, R. Arenal, and N. Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid,” Chem. Commun. (Camb.) 51(65), 12950–12953 (2015).
[Crossref] [PubMed]

Chem. Mater. (1)

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will solar-driven water-splitting devices see the light of day,” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

Chem. Rev. (1)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

J. Willkomm, K. L. Orchard, A. Reynal, E. Pastor, J. R. Durrant, and E. Reisner, “Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production,” Chem. Soc. Rev. 45(1), 9–23 (2016).
[Crossref] [PubMed]

Electrochem. Soc. Interface (1)

K. O. Davis and W. V. Schoenfeld, “Engineered interfaces using surface and contact passivation in silicon solar cells,” Electrochem. Soc. Interface 27(1), 63–66 (2018).
[Crossref]

Energy Environ. Sci. (4)

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, and R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production,” Energy Environ. Sci. 6(3), 943–951 (2013).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: A combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, “Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(7), 2240–2248 (2016).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. M. Al-Amri, B. Cheng, and J.-H. He, “Perovskite methylammonium lead trihalide heterostructures: progress and challenges,” IEEE Trans. NanoTechnol. 18, 1–12 (2019).

J. Am. Chem. Soc. (5)

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, “Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets,” J. Am. Chem. Soc. 135(28), 10274–10277 (2013).
[Crossref] [PubMed]

E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc. 135(25), 9267–9270 (2013).
[Crossref] [PubMed]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia, and H.-Y. Chen, “Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction,” J. Am. Chem. Soc. 139(43), 15479–15485 (2017).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

J. Yang and H. S. Shin, “Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 2(17), 5979–5985 (2014).
[Crossref]

Mater. Today Energy (1)

A. Alarawi, V. Ramalingam, and J.-H. He, “Recent advances in emerging single atom confined two-dimensional materials for water splitting applications,” Mater. Today Energy 11, 1–23 (2019).

Nano Lett. (5)

H.-P. Wang, K. Sun, S. Y. Noh, A. Kargar, M.-L. Tsai, M.-Y. Huang, D. Wang, and J.-H. He, “High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction,” Nano Lett. 13(12), 6222–6227 (2013).
[Crossref] [PubMed]

K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12(3), 1538–1544 (2012).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager, and A. Javey, “General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction,” Nano Lett. 16(7), 4047–4053 (2016).
[Crossref] [PubMed]

Nano Res. (1)

L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction,” Nano Res. 8(1), 281–287 (2015).
[Crossref]

Nanoscale (1)

D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, “One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production,” Nanoscale 10(7), 3518–3525 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Tachibana, L. Vayssieres, and J. R. Durrant, “Artificial photosynthesis for solar water-splitting,” Nat. Photonics 6(8), 511–518 (2012).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS₂: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A. 103(43), 15729–15735 (2006).
[Crossref] [PubMed]

Science (3)

J. A. Turner, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, “Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts,” Science 334(6056), 645–648 (2011).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Thermochim. Acta (1)

J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta 256(2), 325–338 (1995).
[Crossref]

Vacuum (1)

F. Qi, P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang, “Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method,” Vacuum 119, 204–208 (2015).
[Crossref]

Other (3)

Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, “Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction,” J. Mater. Chem. A (2019).

Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting: Standards, experimental methods, and protocols (Springer, 2013).

W. Ouyang, F. Teng, J.-H. He, and X. Fang, “Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering,” Adv. Funct. Mater., 1807672 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) XRD patterns, (b) Raman spectra, (c) PL emission spectra, (d) XPS survey scan spectra, (e) High resolution Mo 3d XPS spectra and (f) High resolution S 2p XPS spectra of MoS2 thin film.
Fig. 2
Fig. 2 (a) HER polarization curves of different precursor concentration derived MoS2 (0.5, 1 and 1.5 M) and Pt wire in 0.5 M H2SO4 at a scan rate of 20 mV/s, (b) Corresponding Tafel plots, (c) Overpotential & Tafel values comparison and (d) Chronoamperometric test of 1M MoS2 measured at a constant potential of 0.1 V vs. RHE.
Fig. 3
Fig. 3 (a) Top view SEM image of MoS2 film, (b) SEM image of front surface of Si, (c) TEM image of MoS2 coated Si (inset, top view TEM image of MoS2/Si-HJ photocathode), (d-f) HR-TEM images of MoS2/Si-HJ, (g, h) TEM image and its corresponding mapping and (i-l) HAADF-STEM mapping images of Mo, S and Si elements in MoS2/Si-HJ.
Fig. 4
Fig. 4 (a) Schematic illustration of MoS2 integrated Si photocathode for PEC H2 production (b) LSV curve of bare Si cell and MoS2/Si-HJ photocathode in 0.5 M H2SO4 at a scan rate of 20 mV/s upon AM 1.5G illumination, (c) MoS2/Si-HJ photocathode response to ON/OFF illumination, (d) Stability curve of MoS2/Si-HJ photocathode in 0.5 M H2SO4 and (e) EIS spectra of bare Si cell and MoS2/Si-HJ photocathode under AM 1.5G illumination.
Fig. 5
Fig. 5 Theoretically calculated and experimentally evolved amount of H2 using MoS2/Si-HJ photocathode under AM1.5G light illumination

Tables (1)

Tables Icon

Table 1 Comparison on the PEC H2 production performance of MoS2/Si-HJ photocathode with the reported MoS2 integrated Si photocathodes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(N H 4 ) 2 Mo S 4 + H 2 2N H 3 +2 H 2 S+Mo S 2
E (RHE) = E Ag/AgCl +0.197V
η STH (%)= V oc ×FF× J sc P in (%)

Metrics