Abstract

Laser ignition was used to operate a four-stroke, four-cylinder, multipoint fuel injection gasoline passenger car engine, replacing the engine classical ignition device. The laser ignition system was compactly built with diode end-pumped Nd:YAG/Cr4+:YAG composite ceramics, each laser spark plug delivering pulses at 1.06 μm with 4 mJ energy and 0.8 ns duration at variable repetition rate, in accordance with the engine speed. The engine was operated at constant speed–constant load condition of 2000 rpm–2 bar equivalent brake mean effective pressure, and different ignition timings, thus simulating city traffic situations. Two relative air-fuel ratios have been considered: λ~1 for the stoichiometric mixture operation and λ~1.25 for the lean mixture condition. Parameters indicating engine performance, efficiency, combustion stability, and emissions have been measured and registered when groups of 500 consecutive cycles were acquired. The engine brake power, brake specific fuel consumption, coefficient of variability for indicated mean effective pressure, initial and main combustion stage durations, as well as exhaust emissions like carbon monoxide (CO) and total unburned hydrocarbons (THC) emphasized that significant improvements can be obtained for lean air-fuel mixture operation. Increases of the nitrogen oxides emission (NOx) were measured when laser ignition was used.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices

Nicolaie Pavel, Traian Dascalu, Gabriela Salamu, Mihai Dinca, Niculae Boicea, and Adrian Birtas
Opt. Express 23(26) 33028-33037 (2015)

Laser ignited engines: progress, challenges and prospects

Geoff Dearden and Tom Shenton
Opt. Express 21(S6) A1113-A1125 (2013)

High-peak-power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output

T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel
Photon. Res. 4(6) 267-271 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
    [Crossref]
  2. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
    [Crossref]
  3. J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE Technical Paper 780329 (1978).
    [Crossref]
  4. J. D. Dale and P. R. Smy, “The first laser ignition engine experiment (c.a. 1976),” in Laser Ignition Conference, OSA Technical Digest (online) (Optical Society of America, 2015); paper T3A.1.
    [Crossref]
  5. J. D. Mullett, P. B. Dickinson, A. T. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: A comparative study,” SAE Technical Paper 2008–01–0470 (2008).
    [Crossref]
  6. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [Crossref]
  7. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [Crossref]
  8. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  9. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  10. J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
    [Crossref]
  11. J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.
  12. T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.
  13. N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
    [Crossref] [PubMed]
  14. N. Pavel, A. Birtas, K. Croitoru, M. Dinca, N. Boicea, and T. Dascalu, Laser ignition of a gasoline engine automobile,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LWA4.3.
  15. A. Birtas, N. Boicea, G. Croitoru, M. Dinca, T. Dascalu, and N. Pavel, Combustion characteristics of a gasoline-air mixture laser ignition,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LFA3.4.
  16. M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
    [Crossref]
  17. S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
    [Crossref]
  18. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(Suppl 6), A1113–A1125 (2013).
    [Crossref] [PubMed]
  19. N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
    [Crossref]
  20. T. Saito, K. Yanagisawa, and H. Furutani, “Gasoline engine performance with laser-induced breakdown ignition under EGR conditions,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC9-4.
  21. S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC6-3.
  22. R. Grzeszik, “Impact of turbulent in-cylinder air motion and local mixture formation on inflammation in lean engine operation: Is multiple point ignition a solution?” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LFA3.1.
    [Crossref]
  23. J. B. Heywood, Internal Combustion Engines Fundamentals (McGraw-Hill Inc., 1988).
  24. T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
    [Crossref]
  25. T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.
  26. T. Saito, T. Sugaya, E. Takahashi, and H. Furutani, Influence of laser incident energy and focal length on multi-point laser ignition in an internal combustion engine at N2 dilution,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LWA4.2.
  27. Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
    [Crossref]
  28. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  29. Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
    [Crossref] [PubMed]
  30. T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel, “High-peak power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output,” Photon. Res. 4(6), 267–271 (2016).
    [Crossref]

2018 (2)

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

2017 (1)

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

2016 (2)

T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel, “High-peak power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output,” Photon. Res. 4(6), 267–271 (2016).
[Crossref]

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
[Crossref]

2015 (2)

2013 (1)

2012 (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

2011 (2)

2010 (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

2009 (1)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

2007 (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

2004 (1)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

1994 (1)

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Bärwinkel, M.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Bihari, B.

S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC6-3.

Birtas, A.

Boicea, N.

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

Brüggemann, D.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Chen, D.

Cheng, H.

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

Croitoru, G.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel, “High-peak power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output,” Photon. Res. 4(6), 267–271 (2016).
[Crossref]

Dascalu, T.

Dearden, G.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

Dinca, M.

Endo, T.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Engelhardt, J.

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Furutani, H.

T. Saito, K. Yanagisawa, and H. Furutani, “Gasoline engine performance with laser-induced breakdown ignition under EGR conditions,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC9-4.

T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.

Grigore, O.

Grigore, O. V.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Gupta, S. B.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
[Crossref]

S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC6-3.

He, Y.

Heinz, P.

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Johzaki, T.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kim, W.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kroupa, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Kuang, Z.

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

Kuwamoto, K.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Li, J.

Li, X.

Lyon, E.

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

Ma, Y.

Morishima, S.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Morsy, M. H.

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Namba, S.-I.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Nübel, K.-H.

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.

O’Briant, S. A.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
[Crossref]

Page, V.

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

Pan, Y.

Pavel, N.

Peng, J.

Ronney, P. D.

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Saito, T.

T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.

T. Saito, K. Yanagisawa, and H. Furutani, “Gasoline engine performance with laser-induced breakdown ignition under EGR conditions,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC9-4.

Salamu, G.

Schwarz, J.

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.

Sekar, R.

S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC6-3.

Shenton, T.

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

Shimokuri, D.

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

Stoppel, K.

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

Sugiura, A.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Sun, R.

Suzuta, Y.

T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.

Taguchi, N.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Takahashi, E.

T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

Vasu, S. S.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
[Crossref]

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Wintner, E.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

Yan, R.

Yanagisawa, K.

T. Saito, K. Yanagisawa, and H. Furutani, “Gasoline engine performance with laser-induced breakdown ignition under EGR conditions,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC9-4.

Yu, X.

Zhang, X.

Combust. Flame (2)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1–2), 55–77 (2004).
[Crossref]

T. Endo, K. Kuwamoto, W. Kim, T. Johzaki, D. Shimokuri, and S.-I. Namba, “Comparative study of laser ignition and spark-plug ignition in high-speed flows,” Combust. Flame 191, 408–416 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Laser Photonics Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Laser Phys. Lett. (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Opt. Eng. (2)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

P. D. Ronney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

Z. Kuang, E. Lyon, H. Cheng, V. Page, T. Shenton, and G. Dearden, “Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance,” Opt. Lasers Eng. 90, 275–283 (2017).
[Crossref]

Photon. Res. (1)

Prog. Quantum Electron. (1)

N. Pavel, M. Bärwinkel, P. Heinz, D. Brüggemann, G. Dearden, G. Croitoru, and O. V. Grigore, “Laser ignition - Spark plug development and application in reciprocating engines,” Prog. Quantum Electron. 58, 1–32 (2018).
[Crossref]

Propulsion Power Res. (1)

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Review: Laser ignition for aerospace propulsion,” Propulsion Power Res. 5(1), 1–21 (2016).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Other (13)

T. Saito, Y. Suzuta, E. Takahashi, and H. Furutani, “Performance of internal combustion engine using multi-point laser ignition under nitrogen dilution conditions,” in 4th Laser Ignition Conference, Yokohama, Japan, 2016; paper LIC6-5.

T. Saito, T. Sugaya, E. Takahashi, and H. Furutani, Influence of laser incident energy and focal length on multi-point laser ignition in an internal combustion engine at N2 dilution,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LWA4.2.

T. Saito, K. Yanagisawa, and H. Furutani, “Gasoline engine performance with laser-induced breakdown ignition under EGR conditions,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC9-4.

S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC6-3.

R. Grzeszik, “Impact of turbulent in-cylinder air motion and local mixture formation on inflammation in lean engine operation: Is multiple point ignition a solution?” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LFA3.1.
[Crossref]

J. B. Heywood, Internal Combustion Engines Fundamentals (McGraw-Hill Inc., 1988).

N. Pavel, A. Birtas, K. Croitoru, M. Dinca, N. Boicea, and T. Dascalu, Laser ignition of a gasoline engine automobile,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LWA4.3.

A. Birtas, N. Boicea, G. Croitoru, M. Dinca, T. Dascalu, and N. Pavel, Combustion characteristics of a gasoline-air mixture laser ignition,” in Laser Ignition Conference 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper LFA3.4.

J. Schwarz, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” in 2nd Laser Ignition Conference, Yokohama, Japan, 2014; paper LIC3-3.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” in 1st Laser Ignition Conference, Yokohama, Japan, 2013; paper LIC3–1.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE Technical Paper 780329 (1978).
[Crossref]

J. D. Dale and P. R. Smy, “The first laser ignition engine experiment (c.a. 1976),” in Laser Ignition Conference, OSA Technical Digest (online) (Optical Society of America, 2015); paper T3A.1.
[Crossref]

J. D. Mullett, P. B. Dickinson, A. T. Shenton, G. Dearden, and K. G. Watkins, “Multi-cylinder laser and spark ignition in an IC gasoline automotive engine: A comparative study,” SAE Technical Paper 2008–01–0470 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Block diagram of the experimental set-up. DL: Diode laser; OF: Optical fiber; LSP: Laser spark plug; CYL: Engine cylinder; ECU: Electronic control unit. (b) The engine equipped with the LI system is presented.
Fig. 2
Fig. 2 Schematic of the engine test bench. The four LSP devices are shown in the inset.
Fig. 3
Fig. 3 (a) The engine brake power and (b) The engine BSFC versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25. Lines represent fittings with polynomial functions.
Fig. 4
Fig. 4 Variation of (a) COVIMEPH and (b) COVα50% versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25.
Fig. 5
Fig. 5 (a) Initial stage of combustion and (b) Main stage of combustion versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25.
Fig. 6
Fig. 6 Variation of CO emissions versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25.
Fig. 7
Fig. 7 THC emissions versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25.
Fig. 8
Fig. 8 NOx emissions versus ignition timing for engine speed of 2000 rpm and BMEP = 2 bar at λ~1 and λ~1.25.

Tables (1)

Tables Icon

Table 1 Relative Deviations in the Engine Parameters when LI Used Instead of ESP Ignitiona

Metrics