Abstract

Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 °C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. By using a model, we also estimate that the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high-activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments

Taqiyyah S. Safi and Jeremy N. Munday
Opt. Express 23(19) A1120-A1128 (2015)

Design and global optimization of high-efficiency thermophotovoltaic systems

Peter Bermel, Michael Ghebrebrhan, Walker Chan, Yi Xiang Yeng, Mohammad Araghchini, Rafif Hamam, Christopher H. Marton, Klavs F. Jensen, Marin Soljačić, John D. Joannopoulos, Steven G. Johnson, and Ivan Celanovic
Opt. Express 18(S3) A314-A334 (2010)

Self-adaptive radiative cooling based on phase change materials

Masashi Ono, Kaifeng Chen, Wei Li, and Shanhui Fan
Opt. Express 26(18) A777-A787 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6(70), 1285 (1967).
  2. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  3. X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
    [Crossref]
  4. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  5. D. J. Fixsen, “The temperature of the cosmic microwave background,” Astrophys. J. 707(2), 916–920 (2009).
    [Crossref]
  6. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  7. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref] [PubMed]
  8. C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
    [Crossref]
  9. P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. (Paris) 14(1), 87–90 (1979).
    [Crossref]
  10. T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
    [Crossref]
  11. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  12. L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
    [Crossref]
  13. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  14. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  15. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  16. Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
    [Crossref]
  17. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
    [Crossref] [PubMed]
  18. Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
    [Crossref]
  19. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  20. E. Sakr and P. Bermel, “Angle-selective reflective filters for exclusion of background thermal emission,” Phys. Rev. Appl. 7(4), 44020 (2017).
    [Crossref]
  21. B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
    [Crossref] [PubMed]
  22. A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
    [Crossref]
  23. A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. (Weinh.) 2(9), 1500119 (2015).
    [Crossref] [PubMed]
  24. K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
    [Crossref]
  25. E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
    [Crossref]
  26. S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
    [Crossref] [PubMed]
  27. M. Zhou, H. Song, X. Xu, A. Shahsafi, Z. Xia, Z. Ma, M. A. Kats, J. Zhu, B. S. Ooi, Q. Gan, and Z. Yu, “Accelerating vapor condensation with daytime radiative cooling,” arXiv Prepr. arXiv:1804, (2018).
  28. H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
    [Crossref] [PubMed]
  29. C. Honsberg and S. Bowden, “PVEDUCATION,” https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature .
  30. P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
    [Crossref]
  31. X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
    [Crossref]
  32. A. R. Gentle and G. B. Smith, “Is enhanced radiative cooling of solar cell modules worth pursuing?” Sol. Energy Mater. Sol. Cells 150, 39–42 (2016).
    [Crossref]
  33. Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).
  34. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  35. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
    [Crossref]
  36. H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
    [Crossref]
  37. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed. (John Wiley and Sons, 2002).
  38. A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
    [Crossref]
  39. T. Silverman, M. Deceglie, and K. Horowitz, “NREL Comparative PV LCOE Calculator,” http://pvlcoe.nrel.gov .
  40. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
    [Crossref] [PubMed]
  41. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), A314–A334 (2010).
    [Crossref] [PubMed]
  42. B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
    [Crossref]
  43. J. S. Stein, W. F. Holmgren, J. Forbess, and C. W. Hansen, “PVLIB: Open source photovoltaic performance modeling functions for Matlab and Python,” in 2016 IEEE 43rd Photovoltaic Specialist Conference (PVSC). IEEE (2016), pp. 1–6.
    [Crossref]
  44. A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN (1987), No. SSI-TR.

2018 (3)

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

2017 (9)

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

E. Sakr and P. Bermel, “Angle-selective reflective filters for exclusion of background thermal emission,” Phys. Rev. Appl. 7(4), 44020 (2017).
[Crossref]

2016 (3)

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Is enhanced radiative cooling of solar cell modules worth pursuing?” Sol. Energy Mater. Sol. Cells 150, 39–42 (2016).
[Crossref]

2015 (3)

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. (Weinh.) 2(9), 1500119 (2015).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

2014 (3)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
[Crossref] [PubMed]

2013 (5)

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

2012 (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

2011 (1)

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

2010 (1)

2009 (1)

D. J. Fixsen, “The temperature of the cosmic microwave background,” Astrophys. J. 707(2), 916–920 (2009).
[Crossref]

1985 (1)

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

1984 (1)

T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
[Crossref]

1982 (1)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1979 (1)

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. (Paris) 14(1), 87–90 (1979).
[Crossref]

1975 (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
[Crossref]

1967 (1)

F. Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6(70), 1285 (1967).

Aguilar, J. L. C.

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Ai, L.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Alam, M. A.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

Araghchini, M.

Bermel, P.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

E. Sakr and P. Bermel, “Angle-selective reflective filters for exclusion of background thermal emission,” Phys. Rev. Appl. 7(4), 44020 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(3), A314–A334 (2010).
[Crossref] [PubMed]

Bhatia, B.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Bitnar, B.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Blanchard, R.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
[Crossref] [PubMed]

Byrnes, S. J.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
[Crossref] [PubMed]

Capasso, F.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
[Crossref] [PubMed]

Carney, T. J.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Celanovic, I.

Chan, W.

Charki, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Chen, K.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

Cui, Y.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Dai, N.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Durisch, W.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Eriksson, T. S.

T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
[Crossref]

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

Fan, S.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Fixsen, D. J.

D. J. Fixsen, “The temperature of the cosmic microwave background,” Astrophys. J. 707(2), 916–920 (2009).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Is enhanced radiative cooling of solar cell modules worth pursuing?” Sol. Energy Mater. Sol. Cells 150, 39–42 (2016).
[Crossref]

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. (Weinh.) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Ghebrebrhan, M.

Gianello, M.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Glick, S.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Goldstein, E. A.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Granqvist, C. G.

T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
[Crossref]

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Grenier, P.

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. (Paris) 14(1), 87–90 (1979).
[Crossref]

Gu, T.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Gudat, W.

Hacke, P.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Hagemann, H.-J.

Hamam, R.

Hjortsberg, A.

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Holzner, R.

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Hsu, P.-C.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Hu, J.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Hu, L.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Jensen, K. F.

Jin, X.

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

Joannopoulos, J. D.

Johnson, S. G.

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kapustin, E. A.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Kébé, C. M. F.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Khan, M. R.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

Kim, H.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Kobi, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Kong, D.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kunz, C.

Kurtz, S.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Leroy, A.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Li, D.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Li, J.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Li, W.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Lushiku, E. M.

T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Marton, C. H.

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Ndiaye, A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Ndiaye, P. A.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Perrin, G.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Raman, A. P.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rao, S. R.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Ruan, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Rubin, M.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Sakr, E.

E. Sakr and P. Bermel, “Angle-selective reflective filters for exclusion of background thermal emission,” Phys. Rev. Appl. 7(4), 44020 (2017).
[Crossref]

Sambou, V.

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Shen, Y.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Shi, Y.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Silverman, T. J.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Is enhanced radiative cooling of solar cell modules worth pursuing?” Sol. Energy Mater. Sol. Cells 150, 39–42 (2016).
[Crossref]

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. (Weinh.) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Soljacic, M.

Song, W.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Spataru, S.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Sun, X.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
[Crossref]

Sun, Y.

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

Tan, G.

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Tan, R.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Terwilliger, K.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Trombe, F.

F. Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6(70), 1285 (1967).

Wang, E. N.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

Wang, K. X.

Wang, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Wang, W.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Wohlgemuth, J.

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

Wu, H.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Yaghi, O. M.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Yang, R.

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yang, S.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Yeng, Y. X.

Yin, X.

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yu, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, J.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Zhang, K.

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

Zhang, X.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Zhao, D.

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhao, L.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Zhou, Z.

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
[Crossref]

Zhu, L.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

ACS Photonics (2)

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Adv. Sci. (Weinh.) (1)

A. R. Gentle and G. B. Smith, “A subambient open roof surface under the mid-summer sun,” Adv. Sci. (Weinh.) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Appl. Energy (2)

K. Zhang, D. Zhao, X. Yin, R. Yang, and G. Tan, “Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA,” Appl. Energy 224, 371–381 (2018).
[Crossref]

B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy 105, 430–438 (2013).
[Crossref]

Appl. Phys. Lett. (1)

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Astrophys. J. (1)

D. J. Fixsen, “The temperature of the cosmic microwave background,” Astrophys. J. 707(2), 916–920 (2009).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

IEEE J. Photovoltaics (2)

P. Hacke, S. Spataru, K. Terwilliger, G. Perrin, S. Glick, S. Kurtz, and J. Wohlgemuth, “Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity,” IEEE J. Photovoltaics 5(6), 1549–1553 (2015).
[Crossref]

X. Sun, T. J. Silverman, Z. Zhou, M. R. Khan, P. Bermel, and M. A. Alam, “An optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling,” IEEE J. Photovoltaics 7(2), 566–574 (2017).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Nat. Commun. (3)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref] [PubMed]

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljačić, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref] [PubMed]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Nat. Energy (1)

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Nat. Nanotechnol. (1)

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8(6), 421–425 (2013).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Optica (1)

Phys. Rev. Appl. (1)

E. Sakr and P. Bermel, “Angle-selective reflective filters for exclusion of background thermal emission,” Phys. Rev. Appl. 7(4), 44020 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from Earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. U.S.A. 111(11), 3927–3932 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” Proc. SPIE 9973, 997308 (2016).
[Crossref]

Y. Sun, Z. Zhou, X. Jin, X. Sun, M. A. Alam, and P. Bermel, “Radiative cooling for concentrating photovoltaic systems,” Proc. SPIE 10369, 103690 (2017).

Rev. Gen. Therm. (1)

F. Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6(70), 1285 (1967).

Rev. Phys. Appl. (Paris) (1)

P. Grenier, “Réfrigération radiative. Effet de serre inverse,” Rev. Phys. Appl. (Paris) 14(1), 87–90 (1979).
[Crossref]

Science (1)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Sol. Energy (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, “Degradations of silicon photovoltaic modules: A literature review,” Sol. Energy 96, 140–151 (2013).
[Crossref]

Sol. Energy Mater. (2)

T. S. Eriksson, E. M. Lushiku, and C. G. Granqvist, “Materials for radiative cooling to low temperature,” Sol. Energy Mater. 11(3), 149–161 (1984).
[Crossref]

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

A. R. Gentle and G. B. Smith, “Is enhanced radiative cooling of solar cell modules worth pursuing?” Sol. Energy Mater. Sol. Cells 150, 39–42 (2016).
[Crossref]

A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95(12), 3207–3215 (2011).
[Crossref]

Sol. RRL (1)

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A universal route to realize radiative cooling and light management in photovoltaic modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist, A. Hjortsberg, and T. S. Eriksson, “Radiative cooling to low temperatures with selectively IR-emitting surfaces,” Thin Solid Films 90(2), 187–190 (1982).
[Crossref]

Other (6)

M. Zhou, H. Song, X. Xu, A. Shahsafi, Z. Xia, Z. Ma, M. A. Kats, J. Zhu, B. S. Ooi, Q. Gan, and Z. Yu, “Accelerating vapor condensation with daytime radiative cooling,” arXiv Prepr. arXiv:1804, (2018).

C. Honsberg and S. Bowden, “PVEDUCATION,” https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature .

T. Silverman, M. Deceglie, and K. Horowitz, “NREL Comparative PV LCOE Calculator,” http://pvlcoe.nrel.gov .

F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed. (John Wiley and Sons, 2002).

J. S. Stein, W. F. Holmgren, J. Forbess, and C. W. Hansen, “PVLIB: Open source photovoltaic performance modeling functions for Matlab and Python,” in 2016 IEEE 43rd Photovoltaic Specialist Conference (PVSC). IEEE (2016), pp. 1–6.
[Crossref]

A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN (1987), No. SSI-TR.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A concentrating photovoltaic (CPV) system with a Fresnel lens concentrator and an enclosure. The radiative cooler can be added to the heat spreader underneath the solar cell.
Fig. 2
Fig. 2 Emittance spectrum of soda-lime glass radiative cooler (εc). The simulation (dashed yellow curve) matches well with the measurement (solid green curve). The spectrum of AM1.5D (red curve) and atmospheric transmittance (τa) of mid-latitude summer sky (blue shaded region) are plotted together. The low absorption in solar spectrum and strong emission in atmospheric window makes the cooler suitable for daytime above-ambient radiative cooling.
Fig. 3
Fig. 3 Comparison between simulated and the measured angular dependent emittance of the soda-lime glass radiative cooler. (a) Simulated emittance of the cooler as a function of wavelength and angle. (b) Measured emittance of the cooler as a function of wavelength and angle. The simulation matches closely with the experiment.
Fig. 4
Fig. 4 Experimental setup to test radiative cooling in a CPV system. (a) A schematic of the testing chamber. Temperature and open-circuit voltage are measured in real time. (b) An expanded schematic of the cooling assembly consisting of PV diode (GaSb) and the soda-lime glass radiative cooler. A piece of copper serves as the heat spreader. (c) A picture of the structure in (b). (d) Picture of the entire setup during an outdoor test. Chamber 1 (with radiative cooler) and Chamber 2 (without radiative cooler) are almost identical while chamber 3 measures the concentrated solar power. The setup is capable of manual solar tracking.
Fig. 5
Fig. 5 Transmittance spectrum of the low-density polyethylene film (blue) and IR Fresnel lens (orange). For transmittance spectrum of LDPE film, 0.3 – 2.5 µm is measured on a spectrophotometer with an integrating sphere (Lambda 950). For 2.5 – 15 µm, the transmittance is measured on an FTIR (Nexus 670). In the model, the transmittance beyond 15 µm is extrapolated as 0.899. Transmittance spectrum of the IR Fresnel lens, extending up to 25.5 µm is provided by the vendor (Edmund Optics); transmittance beyond is extrapolated to be 0.825.
Fig. 6
Fig. 6 Temperature uniformity of the cooling assembly. (a) The temperature difference between the rear probe (blue line) at the backside of the cooling assembly and the front probe at the GaSb PV diode (red line). Only a slight temperature difference of 1.5 °C is observed. (b) The thermal image of the cooling assembly when a bias is applied to the GaSb PV diode. The temperature scale does not account for differences in emissivity between objects.
Fig. 7
Fig. 7 Emittance spectrum of the copper heat spreader evaporated with Al. The emittance is derived from diffuse + specular reflectance measured by a spectrophotometer with an integrating sphere (Lambda 950). In the model, the emittance beyond 2.5 µm is extrapolated as 0.05.
Fig. 8
Fig. 8 Outdoor testing results on July 13th, 2018. (a) Real-time temperature reading with radiative cooling (green curve) and without radiative cooling (red curve). After about 1 hr of operation, radiative cooling induces a temperature reduction about 10 °C compared with the control sample. Steady state temperatures calculated using a steady state model are indicated by the dashed line in corresponding color. (b) Real-time VOC measurement of the GaSb PV with radiative cooling (green curve) and without radiative cooling (red curve). The temperature reduction due to radiative cooling translates to an increase in VOC of about 20 mV (5.7% relative increase). Theoretical predictions including experimental uncertainties (shaded regions) are plotted for comparison. A reasonable match within the error bars is achieved.
Fig. 9
Fig. 9 Applications where radiative cooling can supplement the standard cooling capabilities of photovoltaics for improved performance and reliability. (a) A CPV with a reflective concentrator. The radiative cooler can be added to a heat spreader made of transparent conductive dielectric. (b) A thermophotovoltaic (TPV) system, where the radiative cooler is placed above a heat spreader, inside a vacuum chamber.
Fig. 10
Fig. 10 Outdoor testing results on July 18th, 2018. (a) Real-time temperature reading with radiative cooling (green curve) and without radiative cooling (red curve). Similar to July 13th results, radiative cooling induces a temperature reduction about 10 °C compared with the control sample. Steady state temperatures calculated using a steady state model are indicated by the dashed line in corresponding color. (b) Real-time VOC measurement of the GaSb PV with radiative cooling (green curve) and without radiative cooling (red curve). The temperature reduction due to radiative cooling translates to an increase in VOC of about 20 mV, similar to July 13th results. Theoretical predictions including experimental uncertainties (shaded regions) are plotted for comparison. A reasonable match within the error bars is achieved.
Fig. 11
Fig. 11 (a) Emittance spectrum of the GaSb PV diode. For 0.3 – 2.5 µm (blue shaded region), the emittance is measured by a spectrophotometer with an integrating sphere (Lambda 950). For 2.5 – 15 µm (orange shaded region), the emittance is measured on an FTIR (Nexus 670) at 30° angle of incidence. In the model, the emittance beyond 15 µm is extrapolated as 0.68. (b) Dark I-V of the GaSb PV diode. The measurement is performed on a temperature-controlled probe station (25.2 ± 0.3 °C). The extracted PV parameters are: I 0 =9.4798× 10 6 A, n=1.63134±0.005, R s =0.818864Ω, R sh =26.52Ω.

Tables (2)

Tables Icon

Table 1 Comparison of theoretical steady state temperatures and experimental results

Tables Icon

Table 2 Comparison of theoretical steady state temperatures and experimental results

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P s + P a = P r + P c ,
P s = P cs + P ds g + P ds l ,
P cs =C A pv dλ ε pv (λ) I AM1.5D (λ) τ pe (λ) τ l (λ),
P ds g = A c F g dλ ε c (λ) ¯ DHI(λ) τ pe (λ),
P ds l = A c F l dλ ε c (λ) ¯ DHI(λ) τ pe (λ) τ l (λ),
P a =F( P a pv + P a c,g + P a c,l ),
P a pv = A pv dλ ε pv,a (λ) ¯ I BB (λ, T a ) τ pe (λ) τ l (λ),
P a c,g = A c F g dλ ε c,a (λ) ¯ I BB (λ, T a ) τ pe (λ),
P a c,l = A c F l dλ ε c,a (λ) ¯ I BB (λ, T a ) τ pe (λ) τ l (λ),
P r =F( P r pv + P r c,g + P r c,l ),
P r pv = A pv dλ ε pv (λ) ¯ I BB (λ, T c ) τ pe (λ) τ l (λ),
P r c,g = A c F g dλ ε c (λ) ¯ I BB (λ, T c ) τ pe (λ),
P r c,l = A c F l dλ ε c (λ) ¯ I BB (λ, T c ) τ pe (λ) τ l (λ),
P c =2 A cs h eff ( T c T a )
I r,net = F[ ( P r c,g + P r c,l )( P a c,g + P a c,l ) ]( P ds g + P ds l ) A c
I 0 ( T pv )= I 0 ( T rt ) ( T pv T rt ) 3 exp[ q E g 0 k ( 1 T rt 1 T pv ) ],
I SC = I 0 ( T pv )[ exp( q V OC nk T pv )1 ]+ V OC R sh ,
C ' = C dλ Φ AM1.5D (λ)EQE(λ) τ pe (λ) τ l (λ) dλ Φ AM1.5G (λ)EQE(λ) ,

Metrics