Abstract

We develop a methodology to evaluate the current orbital configuration of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20 satellites and to study various orbital configurations for the next VIIRS in the Joint Polar Satellite System (JPSS) series from the perspective of maximizing the global daily ocean color retrievals. We focus on the coverage losses due to high sensor-zenith angle and high sun glint contamination and find that two sensors cannot avoid gaps in daily coverage. If JPSS-2 shares the same orbit with SNPP and NOAA-20, then phase shift of around 90° relative to SNPP and NOAA-20 would maximize daily ocean color retrievals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric correction in presence of sun glint: application to MERIS

François Steinmetz, Pierre-Yves Deschamps, and Didier Ramon
Opt. Express 19(10) 9783-9800 (2011)

Automated SWIR based empirical sun glint correction of Landsat 8-OLI data over coastal turbid water

Noelia Abascal Zorrilla, Vincent Vantrepotte, Dat Dinh Ngoc, Nicolas Huybrechts, and Antoine Gardel
Opt. Express 27(8) A294-A318 (2019)

Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products

Menghua Wang and Sean W. Bailey
Appl. Opt. 40(27) 4790-4798 (2001)

References

  • View by:
  • |
  • |
  • |

  1. IOCCG, Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology, T. Platt, N. Hoepffner, V. Stuart, and C. Brown (Eds.), Reports of International Ocean-Color Coordinating Group, No. 7, IOCCG, Dartmouth, Canada (2008).
  2. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
    [Crossref] [PubMed]
  3. IOCCG, Earth Observations in Support of Global Water Quality Monitoring, S. Greb, A. Dekker, and C. Binding (Eds.), Reports of International Ocean-Color Coordinating Group, No. 17, IOCCG, Dartmouth, Canada (2018).
  4. M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
    [Crossref]
  5. C. F. Schueler, J. E. Clement, P. E. Ardanuy, C. Welsch, F. DeLuccia, and H. Swenson, ““NPOESS VIIRS sensor design overview,” (Proc. SPIE 4483, 2002), doi:10.1117/12.453451 .
  6. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
    [Crossref]
  7. M. Wang, L. Jiang, X. Liu, S. Son, J. Sun, W. Shi, L. Tan, K. Mikelsons, X. Wang, and V. Lance, “VIIRS ocean color products: A progress update,” in 2016 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 5848–5851.
    [Crossref]
  8. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
    [Crossref]
  9. L. Feng and C. Hu, “Comparison of valid ocean observations between MODIS Terra and Aqua over the global oceans,” IEEE Trans. Geosci. Remote Sens. 54(3), 1575–1585 (2016).
    [Crossref]
  10. M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
    [Crossref]
  11. L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
    [Crossref] [PubMed]
  12. M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [Crossref] [PubMed]
  13. S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
    [Crossref]
  14. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  15. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [Crossref] [PubMed]
  16. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  17. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [Crossref] [PubMed]
  18. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
    [Crossref] [PubMed]
  19. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
    [Crossref] [PubMed]
  20. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
    [Crossref]
  21. C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
  22. M. Wang and S. Son, “VIIRS-derived chlorophyll-a using the ocean color index method,” Remote Sens. Environ. 182, 141–149 (2016).
    [Crossref]
  23. Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
    [Crossref]
  24. M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
    [Crossref]
  25. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [Crossref]
  26. S. Son and M. Wang, “Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters,” Remote Sens. Environ. 159, 250–258 (2015).
    [Crossref]
  27. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
    [Crossref] [PubMed]
  28. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
    [Crossref] [PubMed]
  29. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
    [Crossref] [PubMed]
  30. L. Jiang and M. Wang, “Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing,” Opt. Express 22(18), 21657–21678 (2014).
    [Crossref] [PubMed]
  31. M. Wang and L. Jiang, “Atmospheric correction using the information from the short blue band,” IEEE Trans. Geosci. Remote Sens. 56(10), 6224–6237 (2018).
    [Crossref]
  32. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
    [Crossref]
  33. M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).
    [Crossref] [PubMed]
  34. M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Remote Sens. 44(11), 3196–3205 (2006).
    [Crossref]
  35. L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
    [Crossref]
  36. L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
    [Crossref]
  37. G. Meister and C. R. McClain, “Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua,” Appl. Opt. 49(32), 6276–6285 (2010).
    [Crossref] [PubMed]
  38. K. Ding and H. R. Gordon, “Atmospheric correction of ocean-color sensors: effects of the Earth’s curvature,” Appl. Opt. 33(30), 7096–7106 (1994).
    [Crossref] [PubMed]
  39. C. Cao, X. Xiong, R. Wolfe, F. DeLuccia, Q. Liu, S. Blonski, G. Lin, M. Nishihama, D. Pogorzala, H. Oudrari, and D. Hillger, “Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide,” (NOAA Technical Report NESDIS 142, version 1.3, 2017).
  40. B. B. Barnes and C. Hu, “Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS,” Remote Sens. Environ. 175, 120–129 (2016).
    [Crossref]
  41. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  42. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [Crossref] [PubMed]
  43. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [Crossref]
  44. S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
    [Crossref]
  45. J. Beckers and M. Rixen, “EOF calculations and data filling from incomplete oceanographic data sets,” J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003).
    [Crossref]
  46. A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
    [Crossref]
  47. X. Liu and M. Wang, “Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method,” Remote Sens. 11(2), 178 (2019), doi:.
    [Crossref]

2019 (2)

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

X. Liu and M. Wang, “Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method,” Remote Sens. 11(2), 178 (2019), doi:.
[Crossref]

2018 (1)

M. Wang and L. Jiang, “Atmospheric correction using the information from the short blue band,” IEEE Trans. Geosci. Remote Sens. 56(10), 6224–6237 (2018).
[Crossref]

2017 (1)

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

2016 (5)

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

M. Wang and S. Son, “VIIRS-derived chlorophyll-a using the ocean color index method,” Remote Sens. Environ. 182, 141–149 (2016).
[Crossref]

L. Feng and C. Hu, “Comparison of valid ocean observations between MODIS Terra and Aqua over the global oceans,” IEEE Trans. Geosci. Remote Sens. 54(3), 1575–1585 (2016).
[Crossref]

B. B. Barnes and C. Hu, “Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS,” Remote Sens. Environ. 175, 120–129 (2016).
[Crossref]

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).
[Crossref] [PubMed]

2015 (1)

S. Son and M. Wang, “Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters,” Remote Sens. Environ. 159, 250–258 (2015).
[Crossref]

2014 (1)

2013 (4)

L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
[Crossref] [PubMed]

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

2012 (2)

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

2010 (2)

G. Meister and C. R. McClain, “Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua,” Appl. Opt. 49(32), 6276–6285 (2010).
[Crossref] [PubMed]

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

2009 (2)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

2007 (3)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[Crossref] [PubMed]

2006 (2)

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Remote Sens. 44(11), 3196–3205 (2006).
[Crossref]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

2005 (3)

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

2003 (1)

J. Beckers and M. Rixen, “EOF calculations and data filling from incomplete oceanographic data sets,” J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003).
[Crossref]

2002 (2)

2001 (1)

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

1997 (1)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

1996 (1)

1994 (2)

1992 (1)

1989 (1)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

1954 (1)

Ackerman, S. A.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Alvera-Azcarate, A.

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

Bailey, S. W.

Barnes, B. B.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

B. B. Barnes and C. Hu, “Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS,” Remote Sens. Environ. 175, 120–129 (2016).
[Crossref]

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

Barth, A.

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

Beckers, J.

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

J. Beckers and M. Rixen, “EOF calculations and data filling from incomplete oceanographic data sets,” J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003).
[Crossref]

Broenkow, W.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Carder, K.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Carder, K. L.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Chen, S.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

Cikanek, H.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Clark, D. K.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Cox, C.

d’Andon, O. H. F.

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

Darecki, M.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Davis, C.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Ding, K.

Feng, L.

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

L. Feng and C. Hu, “Comparison of valid ocean observations between MODIS Terra and Aqua over the global oceans,” IEEE Trans. Geosci. Remote Sens. 54(3), 1575–1585 (2016).
[Crossref]

Franz, B. A.

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Ge, Y.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

Goldberg, M. D.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Gordon, H. R.

Harding, J. L. W.

M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

Heidinger, A. K.

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Hu, C.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

B. B. Barnes and C. Hu, “Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS,” Remote Sens. Environ. 175, 120–129 (2016).
[Crossref]

L. Feng and C. Hu, “Comparison of valid ocean observations between MODIS Terra and Aqua over the global oceans,” IEEE Trans. Geosci. Remote Sens. 54(3), 1575–1585 (2016).
[Crossref]

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).

Hubanks, P. A.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Iraci, L. T.

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

Isaacman, A.

Jiang, L.

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Kilcoyne, H.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

King, M. D.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Lee, Z.

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).

Lee, Z. P.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Lin, G.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

Liu, X.

X. Liu and M. Wang, “Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method,” Remote Sens. 11(2), 178 (2019), doi:.
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Mangin, A.

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

Mannino, A.

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

Maritorena, S.

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

McClain, C. R.

Mehta, A.

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

Meister, G.

Menzel, W. P.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

Morel, A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

Munk, W.

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

Platnick, S.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Qiu, Z.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

Rausch, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Rhea, W.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Rixen, M.

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

J. Beckers and M. Rixen, “EOF calculations and data filling from incomplete oceanographic data sets,” J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003).
[Crossref]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

Shi, W.

Siegel, D. A.

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

Son, S.

M. Wang and S. Son, “VIIRS-derived chlorophyll-a using the ocean color index method,” Remote Sens. Environ. 182, 141–149 (2016).
[Crossref]

S. Son and M. Wang, “Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters,” Remote Sens. Environ. 159, 250–258 (2015).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

Strabala, K.

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

Stramski, D.

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

Tan, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Trees, C.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Voss, K.

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Voss, K. J.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Wang, M.

X. Liu and M. Wang, “Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method,” Remote Sens. 11(2), 178 (2019), doi:.
[Crossref]

M. Wang and L. Jiang, “Atmospheric correction using the information from the short blue band,” IEEE Trans. Geosci. Remote Sens. 56(10), 6224–6237 (2018).
[Crossref]

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).
[Crossref] [PubMed]

M. Wang and S. Son, “VIIRS-derived chlorophyll-a using the ocean color index method,” Remote Sens. Environ. 182, 141–149 (2016).
[Crossref]

S. Son and M. Wang, “Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters,” Remote Sens. Environ. 159, 250–258 (2015).
[Crossref]

L. Jiang and M. Wang, “Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing,” Opt. Express 22(18), 21657–21678 (2014).
[Crossref] [PubMed]

L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[Crossref] [PubMed]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Remote Sens. 44(11), 3196–3205 (2006).
[Crossref]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Xie, Y.

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

Annu. Rev. Mar. Sci. (1)

C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1(1), 19–42 (2009).
[Crossref] [PubMed]

Appl. Opt. (11)

L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
[Crossref] [PubMed]

M. Wang and S. W. Bailey, “Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[Crossref] [PubMed]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[Crossref] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[Crossref] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[Crossref] [PubMed]

G. Meister and C. R. McClain, “Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua,” Appl. Opt. 49(32), 6276–6285 (2010).
[Crossref] [PubMed]

K. Ding and H. R. Gordon, “Atmospheric correction of ocean-color sensors: effects of the Earth’s curvature,” Appl. Opt. 33(30), 7096–7106 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

IEEE Trans. Geosci. Remote Sens. (5)

M. Wang and L. Jiang, “Atmospheric correction using the information from the short blue band,” IEEE Trans. Geosci. Remote Sens. 56(10), 6224–6237 (2018).
[Crossref]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Remote Sens. 44(11), 3196–3205 (2006).
[Crossref]

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27(2), 145–153 (1989).
[Crossref]

L. Feng and C. Hu, “Comparison of valid ocean observations between MODIS Terra and Aqua over the global oceans,” IEEE Trans. Geosci. Remote Sens. 54(3), 1575–1585 (2016).
[Crossref]

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites,” IEEE Trans. Geosci. Remote Sens. 51(7), 3826–3852 (2013).
[Crossref]

Int. J. Remote Sens. (1)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

J. Atmos. Ocean. Technol. (1)

J. Beckers and M. Rixen, “EOF calculations and data filling from incomplete oceanographic data sets,” J. Atmos. Ocean. Technol. 20(12), 1839–1856 (2003).
[Crossref]

J. Geophys. Res. (5)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).
[Crossref]

C. Hu, Z. Lee, and B. A. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the ocean,” J. Geophys. Res. 102(D14), 17209–17217 (1997).
[Crossref]

Z. P. Lee, M. Darecki, K. Carder, C. Davis, D. Stramski, and W. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110(C2), C02017 (2005), doi:.
[Crossref]

M. Wang, S. Son, and J. L. W. Harding, “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[Crossref]

J. Geophys. Res. Atmos. (3)

L. Feng, C. Hu, B. B. Barnes, A. Mannino, A. K. Heidinger, K. Strabala, and L. T. Iraci, “Cloud and sun-glint statistics derived from GOES and MODIS observation sover the Intra-Americas Sea for GEO-CAPE mission planning,” J. Geophys. Res. Atmos. 122(3), 1725–1745 (2017).
[Crossref]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. D. Goldberg, H. Kilcoyne, H. Cikanek, and A. Mehta, “Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system,” J. Geophys. Res. Atmos. 118(24), 13463–13475 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

Ocean Model. (1)

A. Alvera-Azcarate, A. Barth, M. Rixen, and J. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea,” Ocean Model. 9(4), 325–346 (2005).
[Crossref]

Opt. Express (4)

Remote Sens. (1)

X. Liu and M. Wang, “Filling the gaps of missing data in the merged VIIRS SNPP/NOAA-20 ocean color product using the DINEOF method,” Remote Sens. 11(2), 178 (2019), doi:.
[Crossref]

Remote Sens. Environ. (7)

S. Chen, C. Hu, B. B. Barnes, Y. Xie, G. Lin, and Z. Qiu, “Improving ocean color data coverage through machining learning,” Remote Sens. Environ. 222, 286–302 (2019).
[Crossref]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

S. Son and M. Wang, “Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters,” Remote Sens. Environ. 159, 250–258 (2015).
[Crossref]

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

B. B. Barnes and C. Hu, “Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS,” Remote Sens. Environ. 175, 120–129 (2016).
[Crossref]

M. Wang and S. Son, “VIIRS-derived chlorophyll-a using the ocean color index method,” Remote Sens. Environ. 182, 141–149 (2016).
[Crossref]

S. Maritorena, O. H. F. d’Andon, A. Mangin, and D. A. Siegel, “Merged satellite ocean color data products using a bio-optical model: characterisstics, benefits and issues,” Remote Sens. Environ. 114(8), 1791–1804 (2010).
[Crossref]

Other (6)

IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

C. F. Schueler, J. E. Clement, P. E. Ardanuy, C. Welsch, F. DeLuccia, and H. Swenson, ““NPOESS VIIRS sensor design overview,” (Proc. SPIE 4483, 2002), doi:10.1117/12.453451 .

IOCCG, Earth Observations in Support of Global Water Quality Monitoring, S. Greb, A. Dekker, and C. Binding (Eds.), Reports of International Ocean-Color Coordinating Group, No. 17, IOCCG, Dartmouth, Canada (2018).

M. Wang, L. Jiang, X. Liu, S. Son, J. Sun, W. Shi, L. Tan, K. Mikelsons, X. Wang, and V. Lance, “VIIRS ocean color products: A progress update,” in 2016 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 5848–5851.
[Crossref]

IOCCG, Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology, T. Platt, N. Hoepffner, V. Stuart, and C. Brown (Eds.), Reports of International Ocean-Color Coordinating Group, No. 7, IOCCG, Dartmouth, Canada (2008).

C. Cao, X. Xiong, R. Wolfe, F. DeLuccia, Q. Liu, S. Blonski, G. Lin, M. Nishihama, D. Pogorzala, H. Oudrari, and D. Hillger, “Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide,” (NOAA Technical Report NESDIS 142, version 1.3, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) VIIRS-SNPP Chl-a data overlaid on top of true color imagery, showing daily coverage for September 21, 2018. Even though true color has a complete global coverage, ocean color products cannot be derived (or are masked) in areas with clouds, high sun glint, high sensor-zenith angle, and polar areas with little sunlight (i.e., large solar-zenith angle). (b) Combined VIIRS-SNPP Chl-a data coverage for three days separated by SNPP 16-day revisit cycle, showing fewer gaps due to clouds and emphasizing gaps due to high sensor-zenith angles (some marked with red crosses) and high sun glint (some marked with orange circles).
Fig. 2
Fig. 2 Seasonal dependence of the total water surface area illuminated by sunlight, including the area of valid ocean color retrievals (blue), the areas where clouds, straylight, ice, dust and heavy aerosols prevent ocean color retrievals (gray), the area high sun glint (yellow), and of high sensor-zenith angle (pink).
Fig. 3
Fig. 3 SNPP 16-day revisit cycle with phase shifts corresponding to time shift in days relative to the SNPP orbit on the given day. Each day introduces a phase shift of 67.5°, resulting in zero phase shift after 16 days. NOAA-20 is flying in the same orbit as SNPP, but 180° out of phase, which also corresponds to SNPP orbit from ± 8 days relative to the present day.
Fig. 4
Fig. 4 Merged coverage of global Chl-a imagery on September 21, 2018 from VIIRS-SNPP with data from different days used to model two sensors on the same orbit with a variable relative phase shift φ of (a) 22.5°, (b) 45°, (c) 67.5°, (d) 90°, (e) 112.5°, (f) 135°, (g) 157.5°, and (h) 180°. Note that for more complete coverage and to highlight the remaining data gaps due to high sensor-zenith angle and high sun glint conditions, data for each day is supplemented with data from 16 days before and after, which have the same pattern of data gaps.
Fig. 5
Fig. 5 Three-sensor merged global daily Chl-a imagery on September 21, 2018 with the two sensors from SNPP and NOAA-20, and third one simulated assuming the relative phase shift φ to SNPP of (a) 22.5°, (b) 45°, (c) 67.5°, (d) 90°, (e) 112.5°, (f) 135°, (g) 157.5°, and (h) −22.5°. As before, data for each day is supplemented by the data from 16 days before and after, to minimize the gaps due to clouds and to highlight the gaps due to high sensor-zenith angle and high sun glint contamination. Note that due to symmetry, the extent and pattern of data gaps in panels (g) φ = 157.5° and (h) φ = 157.5° − 180° = −22.5° is essentially identical.

Tables (2)

Tables Icon

Table 1 Loss of the ocean color product coverage due to high sensor-zenith angle (> 60°) and high sun glint conditions. VIIRS-SNPP ocean color data from year 2016 are used to simulate the merged data from two sensors on the same orbit as SNPP, but with a relative phase shift of φ. Phase shift of 67.5°–90° minimizes the coverage losses, but no choice of phase shift allows to completely eliminate data gaps due to these factors.

Tables Icon

Table 2 Loss of the three-sensor mixed ocean color product coverage due to high sensor-zenith angle (> 60°) and high sun glint conditions. VIIRS-SNPP ocean color data from year 2016 are used to simulate the merged data from the three sensors on the same orbit as SNPP, but with different phases (φ), i.e., SNPP: φ = 0°; NOAA-20: φ = 180°; and the third sensor (JPSS-2) with variable φ. Phase shift of 90°–112.5° for the third sensor relative to SNPP or NOAA-20 minimizes and practically eliminates the coverage losses due to high sensor-zenith angle and high sun glint contamination.

Metrics