Abstract

Laser micromachining technology is a method of precision manufacturing that is experiencing growth with wide applications. Due to the increasingly tense energy situation, it is an appropriate time to consider the efficiency and economic issues of growth in precision manufacturing. The reutilization of a reflected laser beam (RRLB) for modifying metallic materials with low laser absorption is proposed in this article to reduce the energy and time consumption of the laser micromachining process. The novel laser machining approach, using an RRLB, which combined a nanosecond laser with an RRLB optical system of fiber laser, was applied on 6061 aluminum to validate its superior characteristics. The characteristics of the RRLB were clarified by the experiment on 6061 aluminum. Compared with normal laser machining (NLM), the processing efficiency of the RRLB can be greatly improved. Owing to the reutilization of the reflected laser beam energy without a thermal relaxation time, a higher-intensity laser-metal interaction can be realized for the RRLB; thus, the incoming energy can be utilized more effectively by ablating more material instead of diffusing it into the sample. Moreover, practical examples by using the RRLB, such as surface darkening on 6061 aluminum, surface polishing on additive manufactured Al alloy, and surface colorization on titanium and stainless steel, also demonstrated the excellent versatility and superiority of the RRLB approach.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study on the laser-matter-plume interaction and its effects on ablation characteristics during nanosecond pulsed laser scanning ablation process

Jiandong Yuan, Liang Liang, Guozhi Lin, Xiaoqiang Li, and Ming Jiang
Opt. Express 27(16) 23204-23216 (2019)

Reflection of nanosecond Nd:YAG laser pulses in ablation of metals

O. Benavides, O. Lebedeva, and V. Golikov
Opt. Express 19(22) 21842-21848 (2011)

Blackening of magnesium alloy using femtosecond laser

Haixia Shi, Zeqin Cui, Wenxian Wang, Bingshe Xu, Dianqing Gong, and Wei Zhang
Appl. Opt. 54(25) 7766-7772 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
    [Crossref]
  2. T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
    [Crossref]
  3. F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
    [Crossref]
  4. J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
    [Crossref]
  5. P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014).
    [Crossref]
  6. H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
    [Crossref]
  7. K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  8. L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
    [Crossref]
  9. M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
    [Crossref]
  10. X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
    [Crossref]
  11. D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
    [Crossref]
  12. T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
    [Crossref]
  13. N. Takayama and J. Yan, “Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser,” J. Mater. Process. Technol. 243, 299–311 (2017).
    [Crossref]
  14. O. Benavides, O. Lebedeva, and V. Golikov, “Reflection of nanosecond Nd:YAG laser pulses in ablation of metals,” Opt. Express 19(22), 21842–21848 (2011).
    [Crossref] [PubMed]
  15. G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
    [Crossref]
  16. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
    [Crossref] [PubMed]
  17. A. Dubey and V. Yadava, “Laser beam machining-a review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
    [Crossref]
  18. N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
    [Crossref]
  19. N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).
  20. O. Benavides, L. L. May, and A. F. Gil, “A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum,” Opt. Express 21(11), 13068–13074 (2013).
    [Crossref] [PubMed]
  21. H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, and K. Shiokawa, “Development of a high-power blue laser (445 nm) for material processing,” Opt. Lett. 42(12), 2251–2254 (2017).
    [Crossref] [PubMed]
  22. A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
    [Crossref]
  23. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
    [Crossref]
  24. P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
    [Crossref]
  25. G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).
  26. D. Ling, J. Chen, and J. Li, “Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser,” Appl. Opt. 45(13), 3158–3162 (2006).
    [Crossref] [PubMed]
  27. Q. Liu, Laser Processing Technology and Its Application, (Metallurgical Industry, 2007).
  28. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  29. M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
    [Crossref]
  30. U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
    [Crossref]
  31. M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
    [Crossref]
  32. F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
    [Crossref]

2018 (5)

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

2017 (2)

N. Takayama and J. Yan, “Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser,” J. Mater. Process. Technol. 243, 299–311 (2017).
[Crossref]

H. Wang, Y. Kawahito, R. Yoshida, Y. Nakashima, and K. Shiokawa, “Development of a high-power blue laser (445 nm) for material processing,” Opt. Lett. 42(12), 2251–2254 (2017).
[Crossref] [PubMed]

2016 (1)

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

2015 (2)

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

2014 (1)

P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014).
[Crossref]

2013 (1)

2012 (2)

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
[Crossref]

2011 (1)

2009 (3)

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

2008 (3)

D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
[Crossref]

A. Dubey and V. Yadava, “Laser beam machining-a review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

2007 (1)

M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[Crossref]

2006 (1)

2005 (1)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

2004 (1)

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

2003 (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

2001 (1)

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

1994 (2)

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).

1982 (1)

1969 (1)

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Adachi, K.

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

Aizawa, K.

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

Alexeev, I.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Attar, H.

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

Audouard, E.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Barbour, J. C.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Basov, N.

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Benavides, O.

Bhattacharyya, B.

D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
[Crossref]

Boehme, D. R.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Boiko, V.

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Bostanjoglo, G.

G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Brikas, M.

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

Cai, W.

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Chen, J.

Coyne, E.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

Dargusch, M. S.

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Dearden, G.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Deichmann, L.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Dhupal, D.

D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
[Crossref]

Doloi, B.

D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
[Crossref]

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Dubey, A.

A. Dubey and V. Yadava, “Laser beam machining-a review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

Ehtemam-Haghighi, S.

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

French, P.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Friedmann, T.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Gandhi, H.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Garwood, T. L.

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

Gecys, P.

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

Gedvilas, M.

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Gil, A. F.

Glynn, T.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

Goffin, N.

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

Golikov, V.

Gong, Q.

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

Guan, Y.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Hodgson, N.

G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).

Hon, K.

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

Hong, M.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Hossain, A.

P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014).
[Crossref]

Hughes, B. R.

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

Hughes, R.

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

Jiang, L.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

Johnsen, H. A.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Kato, K.

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

Kawahito, Y.

Kent, D.

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

Klaus, E. J.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Krokhin, O.

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Le Harzic, R.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Lebedeva, O.

Leitz, K.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Li, F.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Li, J.

Li, X.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

Liang, L.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

Lim, G.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Ling, D.

Liu, F.

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Liu, J. M.

Liu, P.

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Logothetidis, S.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Lowe, M.

A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
[Crossref]

Luo, F.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Ma, F.

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

Magee, J.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

Mannion, P.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

May, L. L.

Mazur, E.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

McCarty, K.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Medlin, D.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Mills, M. J.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Mirkarimi, P.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Nakashima, Y.

Negutu, C.

M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[Crossref]

O’Connor, D.

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

O’Connor, G.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

Oates, M. R.

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

Ong, W.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Ottesen, D. K.

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

Parandoush, P.

P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014).
[Crossref]

Pasmanik, G.

A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
[Crossref]

Perrie, W.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Phillips, K.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Popescu, I.

M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[Crossref]

Quentin, U.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Raciukaitis, G.

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Rahimifard, S.

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

Regelskis, K.

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

Schmidt, M.

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

Semaltianos, N.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Semenov, O.

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Seow, Y.

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

Sharp, M.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Shiokawa, K.

Sklizkov, G.

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Spiro, A.

A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
[Crossref]

Stafe, M.

M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[Crossref]

Sun, S.

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

Sundaram, S.

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Takayama, N.

N. Takayama and J. Yan, “Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser,” J. Mater. Process. Technol. 243, 299–311 (2017).
[Crossref]

Tuo, J.

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Voisiat, B.

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

Wang, H.

Wang, X.

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

Watkins, K.

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Weber, H.

G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

Woolley, E.

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

Yadava, V.

A. Dubey and V. Yadava, “Laser beam machining-a review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

Yan, J.

N. Takayama and J. Yan, “Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser,” J. Mater. Process. Technol. 243, 299–311 (2017).
[Crossref]

Yang, F.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

Yoshida, R.

Yuan, J.

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

Zhang, H.

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Adv. Opt. Photonics (1)

K. Phillips, H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (3)

A. Spiro, M. Lowe, and G. Pasmanik, “Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm,” Appl. Phys., A Mater. Sci. Process. 107(4), 801–808 (2012).
[Crossref]

M. Gedvilas, G. Raciukaitis, and K. Regelskis, “Self-organization in a chromium thin film under laser irradiation,” Appl. Phys., A Mater. Sci. Process. 93(1), 203–208 (2008).
[Crossref]

N. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys., A Mater. Sci. Process. 94(4), 999–1009 (2009).
[Crossref]

Appl. Surf. Sci. (5)

M. Stafe, C. Negutu, and I. Popescu, “Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime,” Appl. Surf. Sci. 253(15), 6353–6358 (2007).
[Crossref]

F. Luo, W. Ong, Y. Guan, F. Li, S. Sun, G. Lim, and M. Hong, “Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring,” Appl. Surf. Sci. 328, 405–409 (2015).
[Crossref]

M. Gedvilas, B. Voisiat, G. Raciukaitis, and K. Regelskis, “Self-organization of thin metal films by irradiation with nanosecond laser pulses,” Appl. Surf. Sci. 255(24), 9826–9829 (2009).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps,” Appl. Surf. Sci. 249(1–4), 322–331 (2005).
[Crossref]

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1–4), 275–287 (2004).
[Crossref]

Energy (2)

Y. Seow, N. Goffin, S. Rahimifard, and E. Woolley, “A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase,” Energy 109, 894–905 (2016).
[Crossref]

J. Tuo, F. Liu, P. Liu, H. Zhang, and W. Cai, “Energy efficiency evaluation for machining systems through virtual part,” Energy 159, 172–183 (2018).
[Crossref]

Int. J. Mach. Tools Manuf. (4)

P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014).
[Crossref]

H. Attar, S. Ehtemam-Haghighi, D. Kent, and M. S. Dargusch, “Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review,” Int. J. Mach. Tools Manuf. 133, 85–102 (2018).
[Crossref]

A. Dubey and V. Yadava, “Laser beam machining-a review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

D. Dhupal, B. Doloi, and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3),” Int. J. Mach. Tools Manuf. 48(2), 236–248 (2008).
[Crossref]

Int. J. Refract. Met. Hard Mater. (1)

L. Liang, J. Yuan, X. Li, F. Yang, and L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing,” Int. J. Refract. Met. Hard Mater. 72, 211–222 (2018).
[Crossref]

J. Appl. Phys. (1)

T. Friedmann, P. Mirkarimi, D. Medlin, K. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76(5), 3088–3101 (1994).
[Crossref]

J. Clean. Prod. (1)

F. Ma, H. Zhang, K. Hon, and Q. Gong, “An optimization approach of selective laser sintering considering energy consumption and material cost,” J. Clean. Prod. 199, 529–537 (2018).
[Crossref]

J. Eur. Opt. Soc-Rapid (1)

G. Bostanjoglo, N. Hodgson, and H. Weber, “Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power,” J. Eur. Opt. Soc-Rapid 3(4), 497–506 (1994).

J. Laser Appl. (1)

U. Quentin, K. Leitz, L. Deichmann, I. Alexeev, and M. Schmidt, “Optical trap assisted laser nanostructuring in the near-field of microparticles,” J. Laser Appl. 24(4), 042003 (2012).
[Crossref]

J. Laser Micro Nanoeng. (1)

G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?” J. Laser Micro Nanoeng. 4(3), 186–191 (2009).
[Crossref]

J. Mater. Process. Technol. (1)

N. Takayama and J. Yan, “Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser,” J. Mater. Process. Technol. 243, 299–311 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Renew. Sustain. Energy Rev. (1)

T. L. Garwood, B. R. Hughes, M. R. Oates, D. O’Connor, and R. Hughes, “A review of energy simulation tools for the manufacturing sector,” Renew. Sustain. Energy Rev. 81(1), 895–911 (2018).
[Crossref]

Sov. Phys. (1)

N. Basov, V. Boiko, O. Krokhin, O. Semenov, and G. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. 13(1), 1581–1582 (1969).

Tribol. Int. (1)

X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed,” Tribol. Int. 34(10), 703–711 (2001).
[Crossref]

Other (1)

Q. Liu, Laser Processing Technology and Its Application, (Metallurgical Industry, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the RRLB optical system (unit: mm).
Fig. 2
Fig. 2 Laser ray tracing simulations of the RRLB optical system by ZEMAX software: nonsequential ray tracing model.
Fig. 3
Fig. 3 Test setup of the RRLB.
Fig. 4
Fig. 4 Optical images around the irradiated zone at 5 ms delay following the irradiation of first pulse during the laser ablation process with the RRLB and NLM. (Scanning speed vs = 200 mm/s).
Fig. 5
Fig. 5 Morphology of ablation spot using the NLM and RRLB with different laser fluence.
Fig. 6
Fig. 6 Morphology of microgrooves using the NLM and RRLB with different laser fluence. (Scanning speed vs = 200 mm/s).
Fig. 7
Fig. 7 Dependence of the ablation depth of the RRLB and NLM on laser fluence.
Fig. 8
Fig. 8 Dependence of the ablation rate per pulse of the RRLB and NLM on laser fluence.
Fig. 9
Fig. 9 Morphologies of Zone A and Zone B in Fig. 6 at higher magnification. (Laser fluence F0 = 2.4 J/cm2).
Fig. 10
Fig. 10 Dependence of O (at%) of the RRLB and NLM on laser fluence.
Fig. 11
Fig. 11 Practical application examples for the RRLB compared with NLM. (a) Photographic images of the irradiated zones with increasing laser fluence on 6061 aluminum surfaces modified in air for NLM and the RRLB; (b) the surface of additive manufactured Al alloys after being polished by NLM and the RRLB, (c) and (d) macro-scale photographs of surfaces of additive manufactured Al alloy after being polished by NLM and the RRLB; (e) and (f) photographic images of titanium and stainless steel surfaces processed with various different scanning speeds by NLM and the RRLB. (Laser fluence F0 = 2.4 J/cm2).

Tables (3)

Tables Icon

Table 1 Parameters of the RRLB optical system (unit: mm)

Tables Icon

Table 2 Properties of 6061 aluminum [27]

Tables Icon

Table 3 Calculated ablation threshold of 6061 aluminum

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D 2 = 2 w 0 2 ln ( F 0 F t h ) ,

Metrics