Abstract

This paper proposes a tunable multiple-passband microwave photonic filter (MPF) that is incorporated with an injection-locked Fabry-Pérot (FP) laser. In the proposed MPF, multiple passbands can be easily generated based on the frequency-selection effects of the laser structure in the case of multiple light waves injection. The novelty here is that the obtained multiple-passband MPF can achieve either a dual-passband or a single-passband by using merely one experimental scheme. Moreover, since the laser injection ratio of the proposed scheme is high, the central frequency of each passband has a large tunable range. More tunable passbands can be generated by employing more external wavelengths. By fine-detuning the injection parameters, the frequency tuning range of 17 GHz and the out-of-band rejection ratio of 24.1 dB are achieved for the dual-passband MPF, and the out-of-band rejection ratio of 22 dB and the 3-dB bandwidth of 360 MHz are achieved for the single-passband MPF. In addition, the attained peak power and bandwidth of the proposed MPF are investigated with respect to the injection parameters, including detuning frequency, injection ratio and bias current of FP laser. The stability and dynamic range of the MPF are also evaluated through experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity

Fan Jiang, Yuan Yu, Haitao Tang, Lu Xu, and Xinliang Zhang
Opt. Express 24(16) 18655-18663 (2016)

Tunable dual-passband microwave photonic filter with a fixed frequency interval using phase-to-intensity modulation conversion by stimulated Brillouin scattering

Zhengkai Li, Zhiyao Zhang, Zhen Zeng, Jun Yuan, Shangjian Zhang, Yali Zhang, Zhengping Zhang, and Yong Liu
Appl. Opt. 58(8) 1961-1965 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. H. S. Wen, M. Li, W. Li, and N. H. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett. 43(19), 4659–4662 (2018).
    [Crossref] [PubMed]
  4. O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
    [Crossref]
  5. R. Liao, M. Tang, S. Fu, and D. Liu, “Distributed measurement of polarization mode coupling in polarization maintaining fibers using microwave photonic filter technique,” J. Lightwave Technol. 36(19), 4543–4548 (2018).
    [Crossref]
  6. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
    [Crossref]
  7. J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
    [Crossref]
  8. L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
    [Crossref] [PubMed]
  9. H. Chen, Z. Xu, H. Fu, S. Zhang, C. Wu, H. Wu, H. Xu, and Z. Cai, “Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter,” Opt. Express 23(8), 9835–9843 (2015).
    [Crossref] [PubMed]
  10. L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
    [Crossref]
  11. Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
    [Crossref]
  12. X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
    [Crossref]
  13. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
    [Crossref]
  14. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  15. H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38(22), 4857–4860 (2013).
    [Crossref] [PubMed]
  16. E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
    [Crossref]
  17. N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
    [Crossref]
  18. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  19. Y. Yu, J. Dong, E. Xu, X. Li, L. Zhou, F. Wang, and X. Zhang, “Single passband microwave photonic filter with continuous wideband tunability based on electro-optic phase modulator and Fabry-Pérot semiconductor optical amplifier,” J. Lightwave Technol. 29(23), 3542–3550 (2011).
    [Crossref]
  20. F. Jiang, Y. Yu, H. Tang, L. Xu, and X. Zhang, “Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,” Opt. Express 24(16), 18655–18663 (2016).
    [Crossref] [PubMed]
  21. Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
    [Crossref]
  22. H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
    [Crossref]
  23. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [Crossref]
  24. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [Crossref]
  25. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [Crossref]
  26. W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134(6A), A1429–A1450 (1964).
    [Crossref]
  27. R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
    [Crossref]
  28. H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
    [Crossref]
  29. J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
    [Crossref]

2018 (4)

H. S. Wen, M. Li, W. Li, and N. H. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Opt. Lett. 43(19), 4659–4662 (2018).
[Crossref] [PubMed]

R. Liao, M. Tang, S. Fu, and D. Liu, “Distributed measurement of polarization mode coupling in polarization maintaining fibers using microwave photonic filter technique,” J. Lightwave Technol. 36(19), 4543–4548 (2018).
[Crossref]

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
[Crossref]

2017 (3)

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

2016 (1)

2015 (5)

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

H. Chen, Z. Xu, H. Fu, S. Zhang, C. Wu, H. Wu, H. Xu, and Z. Cai, “Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter,” Opt. Express 23(8), 9835–9843 (2015).
[Crossref] [PubMed]

2014 (1)

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

2013 (3)

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

H. Wang, J. Y. Zheng, W. Li, L. X. Wang, M. Li, L. Xie, and N. H. Zhu, “Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source,” Opt. Lett. 38(22), 4857–4860 (2013).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

2006 (1)

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

1998 (1)

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

1985 (2)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

1964 (1)

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134(6A), A1429–A1450 (1964).
[Crossref]

Andrés, M. V.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Bai, G.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Cai, Z.

Cao, Y.

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Capmany, J.

Chen, D.

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

Chen, H.

Chen, L.

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Chen, X.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Cruz, J. L.

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Deng, H.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

Díez, A.

Dong, J.

Fang, T.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Fu, H.

Fu, S.

Gao, D.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Gao, L.

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Goto, R.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Goto, T.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Han, X.

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

Han, Y.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Hao, T.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
[Crossref]

He, M.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Huang, L.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Jiang, F.

F. Jiang, Y. Yu, H. Tang, L. Xu, and X. Zhang, “Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,” Opt. Express 24(16), 18655–18663 (2016).
[Crossref] [PubMed]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Jiang, Y.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Kasuya, H.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Lamb, W. E.

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134(6A), A1429–A1450 (1964).
[Crossref]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

Lau, E. K.

H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Li, H.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Li, M.

Li, P.

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

Li, W.

Li, X.

Li, Y.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Liao, R.

Liu, D.

Liu, L.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Liu, W.

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

Lu, L.

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Min, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Mora, J.

Mori, M.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Nishizawa, N.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Ortega, B.

Pan, S.

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

Pastor, D.

Pu, T.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Shi, N.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
[Crossref]

Shum, P.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Sun, G.

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Sung, H.

H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Tang, H.

Tang, M.

Tong, Z.

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

Wang, F.

Wang, H.

Wang, L. X.

Wang, P.

Wang, R.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Wang, S.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Wei, Z.

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Wen, H. S.

Wu, C.

Wu, H.

Wu, M. C.

H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Xiang, P.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

L. Huang, D. Chen, F. Zhang, P. Xiang, T. Zhang, P. Wang, L. Lu, T. Pu, and X. Chen, “Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source,” Opt. Express 23(20), 25539–25552 (2015).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Xie, L.

Xiong, J.

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Xu, D.

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Xu, E.

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

Y. Yu, J. Dong, E. Xu, X. Li, L. Zhou, F. Wang, and X. Zhang, “Single passband microwave photonic filter with continuous wideband tunability based on electro-optic phase modulator and Fabry-Pérot semiconductor optical amplifier,” J. Lightwave Technol. 29(23), 3542–3550 (2011).
[Crossref]

Xu, H.

Xu, J.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Xu, L.

Xu, O.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

Xu, Z.

Yamane, K.

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

Yan, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Yang, J.

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Yao, J.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
[Crossref] [PubMed]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yu, Y.

Zhang, F.

Zhang, J.

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

Zhang, S.

Zhang, T.

Zhang, X.

Zhang, Z.

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

Zheng, J.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Zheng, J. Y.

Zhou, J.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Zhou, L.

Zhou, Z.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Zhu, H.

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Zhu, N.

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
[Crossref]

Zhu, N. H.

Zu, P.

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Electron. Lett. (1)

R. Goto, T. Goto, N. Nishizawa, H. Kasuya, M. Mori, and K. Yamane, “Sideband injection locking using cavity-enhanced highly non-degenerate four-wave mixing in DFB-LDs,” Electron. Lett. 34(23), 2249–2250 (1998).
[Crossref]

IEEE J. Quantum Electron. (3)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Xiong, R. Wang, T. Pu, T. Fang, J. Zheng, D. Chen, L. Huang, and X. Chen, “A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection,” IEEE J. Sel. Top. Quantum Electron. 21(6), 171–176 (2015).
[Crossref]

IEEE Photonics J. (2)

H. Zhu, R. Wang, P. Xiang, T. Pu, J. Zheng, Y. Li, T. Fang, L. Huang, Y. Han, and X. Chen, “Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser,” IEEE Photonics J. 9(3), 1–12 (2017).
[Crossref]

Y. Jiang, P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Han, E. Xu, W. Liu, and J. Yao, “Tunable dual-passband microwave photonic filter using orthogonal polarization modulation,” IEEE Photonics Technol. Lett. 27(20), 2209–2212 (2015).
[Crossref]

O. Xu, J. Zhang, H. Deng, and J. Yao, “Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor,” IEEE Photonics Technol. Lett. 29(4), 357–360 (2017).
[Crossref]

H. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

L. Gao, J. Zhang, X. Chen, and J. Yao, “Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted Fiber Bragg Grating,” IEEE Trans. Microw. Theory Tech. 62(2), 380–387 (2014).
[Crossref]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (3)

E. Xu, S. Pan, Z. Zhang, and P. Li, “Performance-improved microwave photonic single-passband filter using birefringence of phase-shifted fiber Bragg grating,” Opt. Commun. 428(1), 41–46 (2018).
[Crossref]

N. Shi, T. Hao, W. Li, N. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Opt. Commun. 407(15), 27–32 (2018).
[Crossref]

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Opt. Eng. (1)

Y. Cao, D. Xu, L. Chen, Z. Tong, and J. Yang, “Widely tunable microwave photonic filter based on four-wave mixing,” Opt. Eng. 56(2), 026110 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. 134(6A), A1429–A1450 (1964).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed MPF. (ML: master laser. PC: polarization controller. EOM: electro-optic modulator. PD: photodetector) (b) Injection signals modulated by the mth master laser. (c) FP laser spectral response. (d) Injection-locked Output under the mth master laser. (e) Frequency response of the multiple-passband MPF.
Fig. 2
Fig. 2 Experimental setup of the proposed MPF. (TL: tunable laser. PC: polarization controller. OC: optical coupler. PM: phase modulator. FP: Fabry-Perot laser. OSA: optical spectrum analyzer. PD: photodetector. VNA: vector network analyzer.)
Fig. 3
Fig. 3 Spectral response of the dual-passband MPF and the zoom-in view of the two passbands.
Fig. 4
Fig. 4 (a) Measured amplitude responses of the dual-passband MPFs realized under different conditions (b) the 1st passband corresponding optical spectra.
Fig. 5
Fig. 5 Measured amplitude responses of the dual-passband MPFs. (a) The 1st passband is tuned with ∆f1. (b) The 2nd passband is tuned with ∆f2. (c) The relationship between the detuning frequency and the central frequency of each passband. (d) The relationship between the detuning frequency and the magnitude of each passband.
Fig. 6
Fig. 6 Measured amplitude responses of the dual-passband MPFs. (a) The 1st passband is tuned with R 2 . (b) The 2nd passband is tuned with R 2 .
Fig. 7
Fig. 7 (a) Measured amplitude responses of the dual-passband MPFs realized by tuning Ib. (b) Amplitude responses of the generated MPFs that the 2nd passband coarsely tuned from 11.9 GHz to 28.9 GHz. The inset is the variation of response peak values.
Fig. 8
Fig. 8 The stability of the central frequency and magnitude of (a) the 1st passband and (b) the 2nd passband in 1 h with 5 min interval.
Fig. 9
Fig. 9 The proposed single-passband MPF. (a) Measured amplitude response with the out-of-band suppression ratio of 22 dB and the 3-dB bandwidth of 360 MHz and (b) the corresponding optical spectra and enlarged view of insets.
Fig. 10
Fig. 10 (a) Measured amplitude responses of the single-passband MPFs realized with the different R1 and R2. The inset is the corresponding spectrum. (b) Measured amplitude responses of the single-passband MPFs realized with the different Ib.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) m = 1 M G ( ω M L ( m ) ) J 0 ( β ) cos ω M L ( m ) t + m = 1 M G ( ω M L ( m ) + ω R F ( m ) ) J 0 ( β ) cos ( ω M L ( m ) + ω R F ( m ) ) t + m = 1 M G ( ω M L ( m ) - ω R F ( m ) ) J 0 ( β ) cos ( ω M L ( m ) - ω R F ( m ) ) t ,
H ( ω R F ) = V o u t V i n m = 1 M R G ( ω M L ( m ) ) J 0 ( β ) J 1 ( β ) ( G ( ω M L ( m ) + ω R F ( m ) ) + G ( ω M L ( m ) ω R F ( m ) ) ) β V π ,
k i n j 1 + α 2 A i n A S Δ ω k i n j A i n A S ,
k i n j 1 + α 2 R Δ ω k i n j R .
ω c ( m ) = 1 2 α g ( N S N t h ) + Δ ω ( m ) = k i n j A i n ( m ) A S sin ϕ S = k i n j R ( m ) sin ϕ S ,
Δ ω ( m ) = ω M L ( m ) ω S L ( m ) , Δ f ( m ) = f M L ( m ) f S L ( m ) ,
R ( m ) = 20 log ( A i n ( m ) A S ) = 10 log ( P i n ( m ) P S ) ( d B ) .
Δ f 1 = f M L ( 1 ) f S L ( 1 ) , Δ f 2 = f M L ( 2 ) f S L ( 2 ) ,
R 1 = 10 log ( P i n ( 1 ) P S ( 1 ) ) , R 2 = 10 log ( P i n ( 2 ) P S ( 2 ) ) .

Metrics