Abstract

Imaging through single multimode fiber prevails its counterpart using single mode fiber bundle on spatial resolution limit and minimum radius. Current multimode fiber imaging suffers from fussy calibration, which can be reduced by recent developed compressive sensing scheme [Opt. Lett. 43(21), 5427 (2018). [CrossRef]   [PubMed]  ]. Experiments demonstrate improvement on depth of field by more than three orders of magnitude, together with robustness against macro fiber bending, which is vital to endoscopic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic bending compensation while focusing through a multimode fiber

Salma Farahi, David Ziegler, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 21(19) 22504-22514 (2013)

Enhanced resolution in a multimode fiber imaging system

Gregoire. P. J. Laporte, Nicolino Stasio, Christophe Moser, and Demetri Psaltis
Opt. Express 23(21) 27484-27493 (2015)

Bend translation in multimode fiber imaging

Damien Loterie, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 6263-6273 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Hughes, T. P. Chang, and G. Z. Yang, “Fiber bundle endocytoscopy,” Biomed. Opt. Express 4(12), 2781–2794 (2013).
    [Crossref] [PubMed]
  2. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref] [PubMed]
  3. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  4. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref] [PubMed]
  5. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  6. S. Bianchi, V. P. Rajamanickam, L. Ferrara, E. Di Fabrizio, C. Liberale, and R. Di Leonardo, “Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics,” Opt. Lett. 38(23), 4935–4938 (2013).
    [Crossref] [PubMed]
  7. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
    [Crossref] [PubMed]
  8. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  9. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
    [Crossref]
  10. O. Gyungseok, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
    [Crossref]
  11. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  12. D. Loterie, D. Psaltis, and C. Moser, “Bend translation in multimode fiber imaging,” Opt. Express 25(6), 6263–6273 (2017).
    [Crossref] [PubMed]
  13. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  14. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  15. M. Ruddlesden, J. Zhang, T. Zhao, W. Wang, and L. Su, “Single-shot image retrieval through a multimode fiber using a genetic algorithm,” arXiv 1810.12764 (2018).
  16. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
    [Crossref] [PubMed]
  17. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  18. M. N’Gom, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system,” Opt. Lett. 43(3), 419–422 (2018).
    [Crossref] [PubMed]
  19. L. V. Amitonova and J. F. de Boer, “Compressive imaging through a multimode fiber,” Opt. Lett. 43(21), 5427–5430 (2018).
    [Crossref] [PubMed]
  20. R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
    [Crossref]
  21. J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
    [Crossref]

2018 (3)

2017 (3)

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

D. Loterie, D. Psaltis, and C. Moser, “Bend translation in multimode fiber imaging,” Opt. Express 25(6), 6263–6273 (2017).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
[Crossref] [PubMed]

2015 (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2013 (6)

2012 (4)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

2007 (1)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Amitonova, L. V.

Baraniuk, R. G.

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Bianchi, S.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Borhani, N.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Chang, T. P.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Chung, E.

O. Gyungseok, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

de Boer, J. F.

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Di Fabrizio, E.

Di Leonardo, R.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Ferrara, L.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gu, R. Y.

Guo, H.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Gyungseok, O.

O. Gyungseok, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Hughes, M.

Kahn, J. M.

Kakkava, E.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Li, J.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Liberale, C.

Loterie, D.

Luo, B.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Mahalati, R. N.

Michielssen, E.

Moser, C.

N’Gom, M.

Nadakuditi, R. R.

Niv, E.

Norris, T. B.

Papadopoulos, I. N.

Piestun, R.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Psaltis, D.

Rajamanickam, V. P.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Wu, G.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Yang, D.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Yang, G. Z.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yin, L.

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yun, S. H.

O. Gyungseok, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Biomed. Opt. Express (2)

IEEE Signal Process. Mag. (1)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

O. Gyungseok, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Sci. Bull. (Beijing) (1)

J. Li, B. Luo, D. Yang, L. Yin, G. Wu, and H. Guo, “Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification,” Sci. Bull. (Beijing) 62(10), 717–723 (2017).
[Crossref]

Other (1)

M. Ruddlesden, J. Zhang, T. Zhao, W. Wang, and L. Su, “Single-shot image retrieval through a multimode fiber using a genetic algorithm,” arXiv 1810.12764 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. P: polarizer; C1/2: fiber collimator; S: transmissive object; CMOS: camera.
Fig. 2
Fig. 2 Images at different longitude distances. (a) reference image. (b)–(e): images at 0/6/12/20 mm away, all within the depth of field.
Fig. 3
Fig. 3 Images under different MMF configurations (based on compressed sensing algorithm). (a)-(d): images at 0 /5/15/25 mm (x axis). (e)-(h): images at 0 /5/10/20 mm (y axis).
Fig. 4
Fig. 4 (a) SNR of reconstructed images. (b) Cross correlation coefficient of corresponding speckle patterns.
Fig. 5
Fig. 5 (a)–(d): images at 0/5/10/20 mm under y axis MMF configurations (based on fluctuation-correlation). (e) Cross correlation coefficient of corresponding speckle patterns.

Metrics