Abstract

We report a stable and low-threshold Er-doped random fiber laser (RFL) based on a femtosecond-laser-inscribed random-distributed-grating array (RDGA) as the random feedback. The RDGA had a reflectivity of 93.5%, and its properties were numerically analyzed based on the transfer matrix method. The threshold of the laser was significantly reduced to 5.7 mW, and the linewidth was ~0.4 pm near the threshold as the Anderson localization effect existing in the RDGA significantly improved the laser quality factor (4 × 106). In addition, we propose a method to select RFL lasing modes by stretching a fiber grating filter used in the cavity with different axial strains. The center wavelength hardly drifted and the maximum jitter value of the peak power was less than 0.12 dB over 1 hour for the selected three lasing modes, which indicated that our laser operation was quite stable.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Random fiber laser based on artificially controlled backscattering fibers

Xiaoliang Wang, Daru Chen, Haitao Li, Lijuan She, and Qiong Wu
Appl. Opt. 57(2) 258-262 (2018)

Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings

W. L. Zhang, Y. B. Song, X. P. Zeng, R. Ma, Z. J. Yang, and Y. J. Rao
Photon. Res. 4(3) 102-105 (2016)

Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating

Mathieu Gagné and Raman Kashyap
Opt. Express 17(21) 19067-19074 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [Crossref]
  2. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
    [Crossref] [PubMed]
  3. D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
    [Crossref]
  4. H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
    [Crossref]
  5. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
    [Crossref] [PubMed]
  6. S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
    [Crossref] [PubMed]
  7. Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
    [Crossref]
  8. H. W. Zhang, L. Huang, P. Zhou, X. L. Wang, J. M. Xu, and X. J. Xu, “More than 400 W random fiber laser with excellent beam quality,” Opt. Lett. 42(17), 3347–3350 (2017).
    [Crossref] [PubMed]
  9. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
    [Crossref] [PubMed]
  10. M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39(9), 2755–2758 (2014).
    [Crossref] [PubMed]
  11. L. L. Wang, X. Y. Dong, P. P. Shum, X. H. Liu, and H. B. Su, “Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber,” J. Lightwave Technol. 33(1), 95–99 (2015).
    [Crossref]
  12. Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
    [Crossref]
  13. Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
    [Crossref] [PubMed]
  14. Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
    [Crossref]
  15. Y. P. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Y. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
    [Crossref] [PubMed]
  16. Y. P. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Y. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
    [Crossref] [PubMed]
  17. X. L. Wang, D. R. Chen, H. T. Li, L. J. She, and Q. Wu, “Random fiber laser based on artificially controlled backscattering fibers,” Appl. Opt. 57(2), 258–262 (2018).
    [Crossref] [PubMed]
  18. B. C. Lima, A. S. L. Gomes, P. I. R. Pincheira, A. L. Moura, M. Gagné, E. P. Raposo, C. B. de Araújo, and R. Kashyap, “Observation of Lévy statistics in one-dimensional erbium-based random fiber laser,” J. Opt. Soc. Am. B 34(2), 293–299 (2017).
    [Crossref]
  19. S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
    [Crossref]
  20. W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40(13), 3181–3184 (2015).
    [Crossref] [PubMed]
  21. L. Zhang, Y. B. Song, X. P. Zeng, R. Ma, Z. J. Yang, and Y. J. Rao, “Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings,” Photon. Res. 4(3), 102–105 (2016).
    [Crossref]
  22. A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
    [Crossref] [PubMed]
  23. Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
    [Crossref]
  24. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. B 22(12), 2542–2552 (2005).
    [Crossref]
  25. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
    [Crossref]
  26. V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94(7), 073901 (2005).
    [Crossref] [PubMed]
  27. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
    [Crossref] [PubMed]
  28. Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
    [Crossref] [PubMed]
  29. B. Huang and X. W. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
    [Crossref] [PubMed]
  30. R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
    [Crossref] [PubMed]
  31. M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18(3), 222–228 (1997).
    [Crossref]
  32. A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
    [Crossref]
  33. M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9(7), 955–957 (1997).
    [Crossref]
  34. M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
    [Crossref]
  35. F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
    [Crossref] [PubMed]
  36. I. A. Kostko and R. Kashyap, “Dynamics of ultimate spectral narrowing in a semiconductor fiber-grating laser with an intra-cavity saturable absorber,” Opt. Express 14(7), 2706–2714 (2006).
    [Crossref] [PubMed]
  37. F. Timofeev and R. Kashyap, “High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser,” Opt. Express 11(6), 515–520 (2003).
    [Crossref] [PubMed]

2018 (4)

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

X. L. Wang, D. R. Chen, H. T. Li, L. J. She, and Q. Wu, “Random fiber laser based on artificially controlled backscattering fibers,” Appl. Opt. 57(2), 258–262 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (3)

2015 (5)

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
[Crossref]

L. L. Wang, X. Y. Dong, P. P. Shum, X. H. Liu, and H. B. Su, “Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber,” J. Lightwave Technol. 33(1), 95–99 (2015).
[Crossref]

W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40(13), 3181–3184 (2015).
[Crossref] [PubMed]

Y. P. Xu, P. Lu, S. Gao, D. Xiang, P. Lu, S. Mihailov, and X. Y. Bao, “Optical fiber random grating-based multiparameter sensor,” Opt. Lett. 40(23), 5514–5517 (2015).
[Crossref] [PubMed]

2014 (3)

M. Gagné and R. Kashyap, “Random fiber Bragg grating Raman fiber laser,” Opt. Lett. 39(9), 2755–2758 (2014).
[Crossref] [PubMed]

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
[Crossref] [PubMed]

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

2012 (6)

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
[Crossref] [PubMed]

2011 (1)

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

2009 (2)

2006 (1)

2005 (2)

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. B 22(12), 2542–2552 (2005).
[Crossref]

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94(7), 073901 (2005).
[Crossref] [PubMed]

2004 (1)

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

1999 (1)

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[Crossref]

1997 (2)

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9(7), 955–957 (1997).
[Crossref]

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18(3), 222–228 (1997).
[Crossref]

Abdullina, S. R.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

Ali, M. G. G.

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Alshehri, A.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Andreasen, J.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Ardakani, A. G.

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Asatryan, A. A.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Azana, J.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[Crossref]

Babin, S. A.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
[Crossref] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Bahrampour, A. R.

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Bao, X. Y.

Baset, F.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Belai, O. V.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

Berry, M. V.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18(3), 222–228 (1997).
[Crossref]

Bhardwaj, V. R.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Bliokh, Y.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

Botten, L. C.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Bubnov, M. M.

Burin, A. L.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

Byrne, M. A.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Cao, H.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

Carballar, A.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[Crossref]

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9(7), 955–957 (1997).
[Crossref]

Chaikina, E. I.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[Crossref] [PubMed]

Chang, S. H.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

Chen, D. R.

Chen, Y.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Churkin, D. V.

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

de Araújo, C. B.

Dianov, E. M.

Dong, X. Y.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

L. L. Wang, X. Y. Dong, P. P. Shum, X. H. Liu, and H. B. Su, “Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber,” J. Lightwave Technol. 33(1), 95–99 (2015).
[Crossref]

Du, Y. Q.

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Fan, M. Q.

Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
[Crossref]

Fischer, B.

Freilikher, V.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

Fu, Q.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Gagné, M.

Gao, P. L.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Gao, S.

Ge, L.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Genack, A. Z.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94(7), 073901 (2005).
[Crossref] [PubMed]

Gomes, A. S. L.

Gong, Y.

Guo, Z. Y.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Hu, Z. J.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Huang, B.

Huang, L.

Jia, X. H.

Jiang, Y.

Jovanovic, N.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Kashyap, R.

Klein, S.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18(3), 222–228 (1997).
[Crossref]

Kostko, I. A.

Labonté, L.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Laptev, A. Yu.

Leskova, T. A.

Li, H. T.

Li, P. Y.

Li, Y.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Li, Y. C.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Lima, B. C.

Liu, X. H.

Liu, Y. M.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Liu, Z. X.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Lizárraga, N.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[Crossref] [PubMed]

Lobach, I. A.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

Lu, P.

Luo, Y.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Ma, R.

Mahdavi, S. M.

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Marshall, G. D.

Méndez, E. R.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[Crossref] [PubMed]

Miao, B.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Mihailov, S.

Milner, V.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94(7), 073901 (2005).
[Crossref] [PubMed]

Ming, H.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Moura, A. L.

Muriel, M.

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9(7), 955–957 (1997).
[Crossref]

Muriel, M. A.

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[Crossref]

Nori, F.

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

Orlowski, A.

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

Ou, Z. H.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Pincheira, P. I. R.

Pinheiro, F. A.

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

Podivilov, E. V.

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Puente, N. P.

Rao, Y. J.

Raposo, E. P.

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

Rusek, M.

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

Sebbah, P.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Shapira, O.

Shapiro, D. A.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

She, L. J.

Shu, X. W.

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

B. Huang and X. W. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[Crossref] [PubMed]

Shum, P.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Shum, P. P.

Smith, G. N.

Song, J.

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Song, J. X.

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Song, Y. B.

Steel, M. J.

Stone, A. D.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Su, H. B.

Sugavanam, S.

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

Tang, C. H.

Tian, D.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Timofeev, F.

Türeci, H. E.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Turitsyn, S. K.

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

van Tiggelen, B. A.

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

Vanneste, C.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Vatnik, I. D.

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
[Crossref] [PubMed]

Vlasov, A. A.

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

Wang, K.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Wang, L. L.

Wang, P.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Wang, X. L.

Wang, Y. S.

Wang, Z. N.

W. L. Zhang, R. Ma, C. H. Tang, Y. J. Rao, X. P. Zeng, Z. J. Yang, Z. N. Wang, Y. Gong, and Y. S. Wang, “All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings,” Opt. Lett. 40(13), 3181–3184 (2015).
[Crossref] [PubMed]

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
[Crossref] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

Williams, R. J.

Withford, M. J.

Wu, H.

Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
[Crossref]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
[Crossref] [PubMed]

Wu, Q.

Xiang, D.

Xu, J. M.

Xu, X. J.

Xu, Y. P.

Xu, Z. W.

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

Yang, Z. J.

Yang, Z. X.

Zeng, X. P.

Zhang, D. G.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

Zhang, H. W.

Zhang, L.

Zhang, Q.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, Q. J.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, W. L.

Zhao, Q.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Zhou, P.

Zhu, J. M.

Zhu, J. T.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Zhu, Z. C.

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

Zou, G.

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (2)

D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. N. Wang, E. V. Podivilov, S. A. Babin, Y. J. Rao, and S. K. Turitsyn, “Recent advances in fundamentals and applications of random fiber lasers,” Adv. Opt. Photonics 7(3), 516–569 (2015).
[Crossref]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Y. Guo, J. X. Song, Y. M. Liu, Z. X. Liu, P. Shum, and X. Y. Dong, “Randomly spaced chirped grating-based random fiber laser,” Appl. Phys. B 124(3), 48 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Y. Li, P. Lu, F. Baset, Z. H. Ou, J. Song, A. Alshehri, V. R. Bhardwaj, and X. Y. Bao, “Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback,” Appl. Phys. Lett. 105(10), 101105 (2014).
[Crossref]

Eur. J. Phys. (1)

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys. 18(3), 222–228 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, and X. H. Jia, “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE J. Sel. Top. Quantum Electron. 21(1), 10–15 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Zhang, X. W. Shu, Z. W. Xu, and Y. Q. Du, “Tunable multiwavelength random fiber laser with odd and even order stokes separated,” IEEE Photonics Technol. Lett. 30(5), 455–458 (2018).
[Crossref]

M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 9(7), 955–957 (1997).
[Crossref]

J. Am. Chem. Soc. (1)

Z. C. Zhu, D. Tian, P. L. Gao, K. Wang, Y. C. Li, X. W. Shu, J. T. Zhu, and Q. Zhao, “Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging,” J. Am. Chem. Soc. 140(50), 17484–17491 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

S. R. Abdullina, A. A. Vlasov, I. A. Lobach, O. V. Belai, D. A. Shapiro, and S. A. Babin, “Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG,” Laser Phys. Lett. 13(7), 075104 (2016).
[Crossref]

Nat. Photonics (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[Crossref]

Opt. Express (9)

I. A. Kostko and R. Kashyap, “Dynamics of ultimate spectral narrowing in a semiconductor fiber-grating laser with an intra-cavity saturable absorber,” Opt. Express 14(7), 2706–2714 (2006).
[Crossref] [PubMed]

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[Crossref] [PubMed]

M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012).
[Crossref] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012).
[Crossref] [PubMed]

F. Timofeev and R. Kashyap, “High-power, ultra-stable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser,” Opt. Express 11(6), 515–520 (2003).
[Crossref] [PubMed]

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
[Crossref] [PubMed]

B. Huang and X. W. Shu, “Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG,” Opt. Express 24(16), 17670–17679 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44(4), 969–975 (2012).
[Crossref]

Opt. Lett. (5)

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Y. Bliokh, E. I. Chaikina, N. Lizárraga, E. R. Méndez, V. Freilikher, and F. Nori, “Disorder-induced cavities, resonances, and lasing in randomly layered media,” Phys. Rev. B Condens. Matter Mater. Phys. 86(5), 054204 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen, “Probing Anderson localization of light via decay rate statistics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026605 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94(7), 073901 (2005).
[Crossref] [PubMed]

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88(9), 093904 (2002).
[Crossref] [PubMed]

Z. J. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. G. Zhang, P. Wang, H. Ming, and Q. J. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The measured spectra of the RDGA: (a) reflection spectrum, (b) transmission spectrum.
Fig. 2
Fig. 2 (a) The calculated spectra of RDGA. (b) The spatial intensity distribution inside RDGA for different wavelengths. (c) The spatial distribution of the light intensity in a logarithmic scale along the fiber for four different wavelengths marked in Fig. 2(a). The inset in Fig. 2 (c) shows the local enlargement of the portion around λ1 in Fig. 2(a).
Fig. 3
Fig. 3 The measured spectra of filter: (a) the transmission spectrum at 0 mε, (b) the transmission spectra as a function of the strain.
Fig. 4
Fig. 4 The experimental setup of the RFL based on RDGA. The inserts are the microscope images of the RDGA and the grating filter.
Fig. 5
Fig. 5 Output powers dependence on the pump power. The insert is a local enlargement near the threshold.
Fig. 6
Fig. 6 (a) The output spectral of the RFL evolution when the strain applied to the filter varied. (b) Local enlargement of the marked portion in Fig. 6(a).
Fig. 7
Fig. 7 The evolution of the spectrum with pump power when the strain applied to the filter was (a) 2.19 mε, (b) 3.04 mε. The insets show the local enlargement near the center wavelength.
Fig. 8
Fig. 8 Linewidth as a function of the output power.
Fig. 9
Fig. 9 The stability of the RFL at pump power and strain of (a) 130 mW, 0 mε, (b) 130 mW, 1.65 mε, (c) 130 mW, 2.19 mε, and (d) 48 mW, 3.04 mε. The insets show the peak power fluctuation.

Metrics