Abstract

We demonstrate a modulation approach that relaxes the limitations imposed by stimulated Brillouin scattering (SBS) on amplification and propagation of narrow-linewidth light in fibers. By imposing synchronous amplitude and phase modulation on an input field, the optical spectrum after high-power fiber transmission is compressed using nonlinear self-phase modulation. This effectively reduces the SBS interaction length and increases the SBS threshold, enabling narrower linewidths. Using this technique, we demonstrate >2 × increase in SBS-limited spectral brightness from a kW-class amplifier. We show that SBS suppression becomes more effective for higher powers and longer fibers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers

Angel Flores, Craig Robin, Ann Lanari, and Iyad Dajani
Opt. Express 22(15) 17735-17744 (2014)

Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression

Brian M. Anderson, Angel Flores, and Iyad Dajani
Opt. Express 25(15) 17671-17682 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  2. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
    [Crossref]
  3. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
    [Crossref]
  4. S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
    [Crossref]
  5. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
    [Crossref] [PubMed]
  6. T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
    [Crossref]
  7. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
    [Crossref] [PubMed]
  8. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref] [PubMed]
  9. M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).
  10. N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
    [Crossref]
  11. D. J. Creeden, M. Underwood, T. G. D'Alberto, T. Tero, D. Hosmer, R. Basque, J. Galipeau, D. Paquette, C. Jollivet, D. Jeannotte, and C. Ebert, “Monolithic, narrow linewidth Yb-doped fiber amplifiers with >40% electrical efficiency and 3kW output power,” SPIE Photonics West, paper 10897–10 (2019).
  12. A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
    [Crossref] [PubMed]
  13. M. S. Bowers, “Stimulated Brillouin scattering in optical fibers with end reflections excited by broad-band, phase-modulated pump waves,” Proc. SPIE 9466, 94660J (2015).
    [Crossref]
  14. V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).
  15. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kW, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016).
    [Crossref] [PubMed]
  16. S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
    [Crossref]
  17. H. Tünnermann, P. Jahn, V. Quetschke, J. Neumann, D. Kracht, and P. Weßels, “SBS Mitigation via Phase Modulation and Demodulation,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.2.
  18. P. I. Ionov and T. S. Rose, “SBS reduction in nanosecond fiber amplifiers by frequency chirping,” Opt. Express 24(13), 13763–13777 (2016).
    [Crossref] [PubMed]
  19. G. D. Goodno and J. E. Rothenberg, “Suppression of Stimulated Brillouin Scattering in Kilowatt Fiber Amplifiers using Nonlinear Spectral Compression,” in Advanced Solid State Lasers, paper ATu6A.2 (2018).
    [Crossref]
  20. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  21. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  22. F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
    [Crossref]
  23. G. D. Goodno, “AM/FM Seed for Nonlinear Spectrally Compressed Fiber Amplifier,” U.S. patent application 15845761 (filed December 18, 2017).
  24. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
    [Crossref]
  25. G. Agrawal, Nonlinear Fiber Optics, 4th ed., Elsevier (2007), p. 8.
  26. G. D. Goodno, P. A. Thielen, and J. E. Rothenberg, “Nonlinear spectrally narrowed fiber amplifier,” U.S. Patent 9,036,252 (2015).
  27. C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
    [Crossref] [PubMed]
  28. Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).
  29. G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
    [Crossref]
  30. S. Palese, E. Cheung, G. Goodno, C. C. Shih, F. Di Teodoro, T. McComb, and M. Weber, “Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control,” Opt. Express 20(7), 7422–7435 (2012).
    [Crossref] [PubMed]
  31. D. Brown, M. Dennis, and W. Torruellas, “Improved phase modulation for SBS mitigation in kW-class fiber amplifiers,” SPIE Photonics West, San Francisco, CA, 24 Jan. 2011.
  32. B. M. Anderson, A. Flores, and I. Dajani, “Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression,” Opt. Express 25(15), 17671–17682 (2017).
    [Crossref] [PubMed]
  33. J. O. White, J. T. Young, C. Wei, J. Hu, and C. R. Menyuk, “Seeding fiber amplifiers with piecewise parabolic phase modulation for high SBS thresholds and compact spectra,” Opt. Express 27(3), 2962–2974 (2019).
    [Crossref] [PubMed]
  34. A. V. Harish and J. Nilsson, “Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering,” Opt. Express 23(6), 6988–6999 (2015).
    [Crossref] [PubMed]

2019 (2)

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

J. O. White, J. T. Young, C. Wei, J. Hu, and C. R. Menyuk, “Seeding fiber amplifiers with piecewise parabolic phase modulation for high SBS thresholds and compact spectra,” Opt. Express 27(3), 2962–2974 (2019).
[Crossref] [PubMed]

2018 (4)

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (2)

A. V. Harish and J. Nilsson, “Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering,” Opt. Express 23(6), 6988–6999 (2015).
[Crossref] [PubMed]

M. S. Bowers, “Stimulated Brillouin scattering in optical fibers with end reflections excited by broad-band, phase-modulated pump waves,” Proc. SPIE 9466, 94660J (2015).
[Crossref]

2014 (2)

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
[Crossref] [PubMed]

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

2012 (1)

2011 (3)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

2010 (2)

2007 (1)

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

2005 (1)

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

1999 (1)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
[Crossref]

1988 (1)

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Aallos, V.

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

Adams, L. N.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Anderson, B. M.

Andresen, E. R.

Aparanji, S.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Balaswamy, V.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Beier, F.

Book, L. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Bowers, M. S.

M. S. Bowers, “Stimulated Brillouin scattering in optical fibers with end reflections excited by broad-band, phase-modulated pump waves,” Proc. SPIE 9466, 94660J (2015).
[Crossref]

Browning, D. F.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
[Crossref]

Cheung, E.

Choudhury, V.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Chun-Ching Shih, D. M.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Dajani, I.

De La Cruz, J.

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Di Teodoro, F.

Dudley, J. M.

Eberhardt, R.

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Fan, T. Y.

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier,” Opt. Lett. 41(22), 5202–5205 (2016).
[Crossref] [PubMed]

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Feng, Y.

Finot, C.

Flores, A.

Gapontsev, V.

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Ghosh, A.

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

Goodno, G.

Goodno, G. D.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

Haarlammert, N.

Harish, A. V.

Hein, S.

Ho, J. G.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Hoffman, P. R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Honea, E. C.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Hu, J.

Hupel, C.

Ionov, P. I.

Jauregui, C.

Johnson, A. M.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Kanskar, M.

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

Ke, W.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Kimmelma, O.

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Koponen, J.

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

Koyama, F.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Kuhn, S.

Lanari, A.

Li, T.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

Liem, A.

Limpert, J.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Liu, A.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Loftus, T. H.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Ma, Y.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

Machan, J. P.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

McComb, T.

McComb, T. S.

McNaught, S. J.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

Menyuk, C. R.

Naderi, N. A.

Nilsson, J.

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

A. V. Harish and J. Nilsson, “Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering,” Opt. Express 23(6), 6988–6999 (2015).
[Crossref] [PubMed]

Nold, J.

Norsen, M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Oga, K.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Oron, D.

Palese, S.

Panbiharwala, Y.

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

Peng, J.

Peng, W.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

Platonov, N.

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Prakash, R.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Proske, F.

Rhein, S.

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Rigneault, H.

Robin, C.

Rose, T. S.

Rothenberg, J. E.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
[Crossref]

Royse, R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Sattler, B.

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

Schmidt, O.

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Schreiber, T.

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Shatrovoy, O.

Shih, C. C.

Shimabukuro, M. P.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Srinivasan, B.

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Sun, Y.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

Supradeepa, V. R.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Taunay, T. F.

Thielen, P. A.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

Thomas, A. M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Tünnermann, A.

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Venkitesh, D.

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

Vikram, B. S.

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Wacks, M. E.

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Wang, X.

Wang, Y.

Weber,

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

Weber, M.

Weber, M. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
[Crossref] [PubMed]

Wei, C.

Weiss, S. B.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

White, J. O.

Wickham, M. G.

Wilcox, R. B.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
[Crossref]

Yagodkin, R.

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Young, J. T.

Yu, C. X.

Yusim, A.

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Zha, C.

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

Zhang, J.

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

Zhang, K.

Zimer, H.

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. J. McNaught, P. A. Thielen, L. N. Adams, J. G. Ho, A. M. Johnson, J. P. Machan, J. E. Rothenberg, D. M. Chun-Ching Shih, M. P. Shimabukuro, M. E. Wacks, Weber, and G. D. Goodno, “Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam,” IEEE J. Sel. Top. Quantum Electron. 20(5), 174 (2014).
[Crossref]

T. Y. Fan, “Laser Beam Combining for High-Power, High-Radiance Sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

J. Lightwave Technol. (1)

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[Crossref]

Laser Phys. (1)

T. Li, C. Zha, Y. Sun, Y. Ma, W. Ke, and W. Peng, “3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28(10), 105101 (2018).
[Crossref]

Opt. Eng. (1)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Opt. Express (8)

S. Palese, E. Cheung, G. Goodno, C. C. Shih, F. Di Teodoro, T. McComb, and M. Weber, “Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control,” Opt. Express 20(7), 7422–7435 (2012).
[Crossref] [PubMed]

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
[Crossref] [PubMed]

A. V. Harish and J. Nilsson, “Optimization of phase modulation with arbitrary waveform generators for optical spectral control and suppression of stimulated Brillouin scattering,” Opt. Express 23(6), 6988–6999 (2015).
[Crossref] [PubMed]

P. I. Ionov and T. S. Rose, “SBS reduction in nanosecond fiber amplifiers by frequency chirping,” Opt. Express 24(13), 13763–13777 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

B. M. Anderson, A. Flores, and I. Dajani, “Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression,” Opt. Express 25(15), 17671–17682 (2017).
[Crossref] [PubMed]

C. Zha, W. Peng, X. Wang, Y. Wang, T. Li, Y. Ma, K. Zhang, Y. Feng, J. Peng, and Y. Sun, “Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation,” Opt. Express 25(17), 19740–19751 (2017).
[Crossref] [PubMed]

J. O. White, J. T. Young, C. Wei, J. Hu, and C. R. Menyuk, “Seeding fiber amplifiers with piecewise parabolic phase modulation for high SBS thresholds and compact spectra,” Opt. Express 27(3), 2962–2974 (2019).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Proc. SPIE (6)

Y. Panbiharwala, A. Ghosh, J. Nilsson, D. Venkitesh, and B. Srinivasan, “Experimental investigation of the onset of modulation instability as a precursor for the stimulated Brillouin scattering in Yb-doped fiber amplifiers,” Proc. SPIE 10512, 105122X (2018).

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, “The issue of FM to AM conversion on the National Ignition Facility,” Proc. SPIE 3492, 51–61 (1999).
[Crossref]

S. Rhein, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-average power optical demodulation of a fiber amplified phase modulated single-frequency signal,” Proc. SPIE 7914, 791430 (2011).
[Crossref]

M. S. Bowers, “Stimulated Brillouin scattering in optical fibers with end reflections excited by broad-band, phase-modulated pump waves,” Proc. SPIE 9466, 94660J (2015).
[Crossref]

M. Kanskar, J. Zhang, J. Koponen, O. Kimmelma, and V. Aallos, “I-Ning Hu, and A. Galvanauskas, “Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications,” Proc. SPIE 10512, 105120F (2018).

N. Platonov, V. Gapontsev, R. Yagodkin, J. De La Cruz, and A. Yusim, “Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format,” Proc. SPIE 10512, 13 (2018).
[Crossref]

Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices (1)

V. Balaswamy, R. Prakash, V. Choudhury, S. Aparanji, B. S. Vikram, and V. R. Supradeepa, “Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination,” Proc. SPIE 10902. Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, 109021G (2019).

Other (7)

D. J. Creeden, M. Underwood, T. G. D'Alberto, T. Tero, D. Hosmer, R. Basque, J. Galipeau, D. Paquette, C. Jollivet, D. Jeannotte, and C. Ebert, “Monolithic, narrow linewidth Yb-doped fiber amplifiers with >40% electrical efficiency and 3kW output power,” SPIE Photonics West, paper 10897–10 (2019).

H. Tünnermann, P. Jahn, V. Quetschke, J. Neumann, D. Kracht, and P. Weßels, “SBS Mitigation via Phase Modulation and Demodulation,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N.2.

G. D. Goodno and J. E. Rothenberg, “Suppression of Stimulated Brillouin Scattering in Kilowatt Fiber Amplifiers using Nonlinear Spectral Compression,” in Advanced Solid State Lasers, paper ATu6A.2 (2018).
[Crossref]

G. D. Goodno, “AM/FM Seed for Nonlinear Spectrally Compressed Fiber Amplifier,” U.S. patent application 15845761 (filed December 18, 2017).

G. Agrawal, Nonlinear Fiber Optics, 4th ed., Elsevier (2007), p. 8.

G. D. Goodno, P. A. Thielen, and J. E. Rothenberg, “Nonlinear spectrally narrowed fiber amplifier,” U.S. Patent 9,036,252 (2015).

D. Brown, M. Dennis, and W. Torruellas, “Improved phase modulation for SBS mitigation in kW-class fiber amplifiers,” SPIE Photonics West, San Francisco, CA, 24 Jan. 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Conceptual diagram for nonlinear phase demodulation. (a) Block diagram. (b) Notional PSD at different locations in the optical circuit. (c) Notional amplitude modulation at different locations.
Fig. 2
Fig. 2 Experimental high power test layout. Tests were performed with and without the components with cross-hatched backgrounds (Dispersion compensation and Delivery fiber).
Fig. 3
Fig. 3 Calculated dispersive FM-to-AM conversion for L = 100 m. (a) m = 0, no AM applied at the modulator. (b) Applied modulator AM m = –0.4.
Fig. 4
Fig. 4 Measured modulation parameters optimized for spectral compression efficiency at each power level with no delivery fiber, and the corresponding inferred B-integrals.
Fig. 5
Fig. 5 Measured seed spectra and 1.3 kW amplified spectra with synchronous amplitude and frequency modulations cycled on (m = –0.46, β = 2 rad) and off (m, β = 0) in different combinations, with no delivery fiber. (a) Both AM and FM off. (b) AM only on. (c) FM only on. (d) Both AM and FM on.
Fig. 6
Fig. 6 Comparison of 1.3 kW optical PSD with synchronous AM + FM engaged (red) and disengaged (blue), with no delivery fiber.
Fig. 7
Fig. 7 Power evolution showing nonlinear linewidth narrowing of (a) measured and (b) modeled amplified optical PSDs.
Fig. 8
Fig. 8 Nonlinearly demodulated output and return PSD. The return PSD shows SBS Stokes light at –16 GHz offsets (highlighted by the dashed red lines) from the 32 GHz modulation harmonics.
Fig. 9
Fig. 9 (a) Measured FWHM SBS-limited linewidths with no delivery fiber. (b) Ratio of SBS linewidths with and without the synchronous AM/FM, compared to the calculated ratio of the nonlinear strengths of the carrier using Eq. (19).
Fig. 10
Fig. 10 Estimated reduction in SBS-limited linewidths as FM depth increases, along with residual spectrally uncompressed sideband power for different values of B.
Fig. 11
Fig. 11 Reduction in SBS limited linewidths with 20-m delivery fiber as a function of (a) FM depth β; (b) amplifier power.
Fig. 12
Fig. 12 SBS-limited amplified spectra measured with 20-m delivery fiber at 700 W output, with an estimated B = 10 rad.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t )= e iϕ( t ) .
E 2 ( t )= 1+δP( t ) e iϕ( t ) .
δP( t )=mu( t )
ϕ FM ( t )=βu( t )
E 3 ( t )= 1+δP( t ) e iϕ( t )+i ϕ FM ( t ) .
E out ( t )= 1+δP( t ) e iϕ( t )+i ϕ FM ( t )+iB[ 1+δP( t ) ] ,
ϕ SPM ( t )= ϕ FM ( t ).
β/m=B.
u( t )=sin( ω mod t ),
E 3 ( t )= 1+msin( ω mod t ) e iϕ( t )+iβsin( ω mod t ) .
E 3 ( t )= 1+msin( ω mod t ) e iϕ( t ) n= J n ( β ) e in ω mod t ,
E 3 ( ω )= E 2 ( ω ) n= J n ( β )δ( ωn ω mod ) = n= J n ( β ) E 2 ( ωn ω mod ),
1+msin( ω mod t ) =1+ m 2 sin( ω mod t ) m 2 8 sin 2 ( ω mod t )+ =1 m 2 16 + m 2 sin( ω mod t )+ m 2 16 cos( 2 ω mod t )+
E disp ( t )= 1+msin( ω mod t ) e iϕ( t ) n= J n ( β ) e in ω mod t+i ϕ disp ( n ω mod ) .
ϕ disp ( ω )= λ 2 D λ L ω 2 /( 4πc ),
E out ( ω )= n= J n ( β+mB ) E 2 ( ωn ω mod ).
B( z )= 2π n 2 λ A eff 0 z P( z )d z ,
| J 0 ( β+mB( z ) ) | 2 P( z )dz,
SBS reduction= P( z )dz | J 0 ( β+mB( z ) ) | 2 P( z )dz .

Metrics