Abstract

Free space optical (FSO) communication is a promising technology for future deep space exploration, but it encounters coronal turbulence during superior solar conjunction. In this paper, the bit-error rate (BER) performance of deep space FSO communication systems is evaluated for optical waves propagating in the non-Kolmogorov coronal turbulence. By virtue of its high energy efficiency, the pulse position modulation (PPM) technique is adopted to mitigate the influence of turbulence under lognormal distribution channels. The effects of the parameters of the coronal turbulence and of the FSO system, such as the turbulence outer scale, spectral index, symbol number, data bit rate, equivalent load resistor, and average gain, on the BER are investigated and discussed in this paper. In addition, the performance improvement from M-ary PPM and binary phase-shift keying subcarrier intensity modulation is studied. The results of a numerical evaluation illustrate that a deep space FSO communication system with PPM scheme can well be used to mitigate the impact of coronal turbulence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere

Yalçın Ata, Yahya Baykal, and Muhsin C. Gökçe
Appl. Opt. 57(24) 7006-7011 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
    [Crossref]
  2. H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
    [Crossref]
  3. Y. Zhao, A. Zhao, L. Zhu, W. Lv, J. Xu, S. Li, and J. Wang, “Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions,” Opt. Lett. 42, 4699–4702 (2017).
    [Crossref] [PubMed]
  4. M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun. 427, 609–616 (2018).
    [Crossref]
  5. W. Lim, C. Yun, and K. Kim, “BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels,” Opt. Express 17, 4479–4484 (2009).
    [Crossref] [PubMed]
  6. H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
    [Crossref]
  7. G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26, 8566–8580 (2018).
    [Crossref] [PubMed]
  8. F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
    [Crossref]
  9. J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma–Gamma atmospheric turbulence,” Appl. Opt. 54, 7575–7585 (2015).
    [Crossref] [PubMed]
  10. P. Wang, Z. Lu, L. Guo, H. Feng, T. Shang, R. Wang, and Y. Yang, “Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels,” Opt. Express 22, 20828–20841 (2014).
    [Crossref] [PubMed]
  11. Y. Zhang, P. Wang, T. Liu, L. Guo, Y. Li, and W. Wang, “Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence,” Opt. Express 26, 22182–22196 (2018).
    [Crossref] [PubMed]
  12. D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
    [Crossref]
  13. M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).
  14. Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
    [Crossref]
  15. J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
    [Crossref]
  16. H. Sugiyama and K. Nosu, “MPPM: a method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7, 465–472 (1989).
    [Crossref]
  17. A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
    [Crossref]
  18. H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
    [Crossref]
  19. H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
    [Crossref]
  20. D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
    [Crossref]
  21. A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
    [Crossref]
  22. A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245, 355–367 (2007).
    [Crossref]
  23. S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
    [Crossref]
  24. C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
    [Crossref]
  25. G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17, 1505–1509 (2018).
    [Crossref]
  26. G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676, 1338–1345 (2008).
    [Crossref]
  27. J. Singh and V. K. Jain, Performance Analysis of BPPM and M-ary PPM Optical Communication Systems in Atmospheric Turbulence, IETE Tech. Rev. 25, 146–153 (2008).
    [Crossref]
  28. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
    [Crossref]
  29. Y. Ata, Y. Baykal, and M. C. Gökçe, “M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere,” Appl. Opt. 57, 7006–7011 (2018).
    [Crossref] [PubMed]
  30. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).
  31. K. E. Wilson and J. R. Lesh, “An overview of the Galileo Optical Experiment (GOPEX),” Telecommunications and Data Acquisition Progress Report 114, 192–204 (1993).
  32. K. E. Wilson, “An Overview of the GOLD Experiment Between the ETS-VI Satellite and the Table Mountain Facility,” Telecommunications and Data Acquisition Progress Report,  1996, 8–19 (1996).
  33. D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).
  34. A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).
  35. D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

2018 (7)

M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun. 427, 609–616 (2018).
[Crossref]

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17, 1505–1509 (2018).
[Crossref]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26, 8566–8580 (2018).
[Crossref] [PubMed]

Y. Zhang, P. Wang, T. Liu, L. Guo, Y. Li, and W. Wang, “Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence,” Opt. Express 26, 22182–22196 (2018).
[Crossref] [PubMed]

Y. Ata, Y. Baykal, and M. C. Gökçe, “M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere,” Appl. Opt. 57, 7006–7011 (2018).
[Crossref] [PubMed]

2017 (5)

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
[Crossref]

Y. Zhao, A. Zhao, L. Zhu, W. Lv, J. Xu, S. Li, and J. Wang, “Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions,” Opt. Lett. 42, 4699–4702 (2017).
[Crossref] [PubMed]

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
[Crossref]

2015 (4)

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
[Crossref]

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma–Gamma atmospheric turbulence,” Appl. Opt. 54, 7575–7585 (2015).
[Crossref] [PubMed]

2014 (3)

P. Wang, Z. Lu, L. Guo, H. Feng, T. Shang, R. Wang, and Y. Yang, “Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels,” Opt. Express 22, 20828–20841 (2014).
[Crossref] [PubMed]

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
[Crossref]

2013 (1)

F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
[Crossref]

2009 (1)

2008 (4)

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
[Crossref]

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676, 1338–1345 (2008).
[Crossref]

J. Singh and V. K. Jain, Performance Analysis of BPPM and M-ary PPM Optical Communication Systems in Atmospheric Turbulence, IETE Tech. Rev. 25, 146–153 (2008).
[Crossref]

2007 (1)

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245, 355–367 (2007).
[Crossref]

2005 (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[Crossref]

2004 (1)

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

2003 (1)

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

1996 (1)

K. E. Wilson, “An Overview of the GOLD Experiment Between the ETS-VI Satellite and the Table Mountain Facility,” Telecommunications and Data Acquisition Progress Report,  1996, 8–19 (1996).

1993 (2)

D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).

K. E. Wilson and J. R. Lesh, “An overview of the Galileo Optical Experiment (GOPEX),” Telecommunications and Data Acquisition Progress Report 114, 192–204 (1993).

1989 (1)

H. Sugiyama and K. Nosu, “MPPM: a method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7, 465–472 (1989).
[Crossref]

Abdollahramezani, S.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Abolhassani, B.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Abshire, J. B.

D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).

Afanasiev, A.

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245, 355–367 (2007).
[Crossref]

Afanasiev, N.

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245, 355–367 (2007).
[Crossref]

Ahmadirad, M.

M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun. 427, 609–616 (2018).
[Crossref]

Albee, A.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Ata, Y.

Battel, S.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Baykal, Y.

Bird, M.

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Biswas, A.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

Boroson, D. M.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

Brace, R.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Burdick, G.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Burr, P.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Cao, Y.

Casani, J.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Chashei, I.

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Chaston, C. C.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Chizari, A.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Deng, B. Y.

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

Echim, M.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Edwards, B. L.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

Efimov, A. I.

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Escoubet, C. P.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Feng, H.

Finley, S.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

Fort, D.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

Garrido-Balsells, J. M.

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
[Crossref]

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

Ghassemlooy, Z.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Gökçe, M. C.

Guo, L.

Ho, C. M.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
[Crossref]

Hou, Z.

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
[Crossref]

Jain, V. K.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
[Crossref]

J. Singh and V. K. Jain, Performance Analysis of BPPM and M-ary PPM Optical Communication Systems in Atmospheric Turbulence, IETE Tech. Rev. 25, 146–153 (2008).
[Crossref]

Jamali, M. V.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Johnson, J. R.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
[Crossref]

Kar, S.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
[Crossref]

Khallaf, H. S.

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
[Crossref]

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

Khorramshahi, P.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Kiasaleh, K.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[Crossref]

Kim, K.

Lavell, J.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Lavraud, B.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Leising, C.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Lemon, C.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Lesh, J. R.

K. E. Wilson and J. R. Lesh, “An overview of the Galileo Optical Experiment (GOPEX),” Telecommunications and Data Acquisition Progress Report 114, 192–204 (1993).

Li, F.

F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
[Crossref]

Li, K.

Li, S.

Li, X.

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

Li, Y.

Liao, R.

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

Lim, W.

Liu, D.

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

Liu, H.

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

Liu, T.

Liu, Y.

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

Lu, Z.

Luo, X.

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

Lv, W.

Ma, J.

Macdowall, R. J.

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676, 1338–1345 (2008).
[Crossref]

MacPherson, D.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Mirani, A.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Morabito, D. D.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
[Crossref]

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

Nabavi, P.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Nosu, K.

H. Sugiyama and K. Nosu, “MPPM: a method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7, 465–472 (1989).
[Crossref]

Nykyri, K.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Otto, A.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Parsay, A.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Plettemeier, D.

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Qiao, Y.

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

Raeder, J.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Salehi, J. A.

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

Samoznaev, L.

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Sampei, S.

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
[Crossref]

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

Shalaby, H. M. H.

H. S. Khallaf, H. M. H. Shalaby, J. M. Garrido-Balsells, and S. Sampei, “Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and gamma-gamma free-space optical channels,” J. Opt. Commun. Netw. 9, 161–171 (2017).
[Crossref]

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

Shambayati, S.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

Shang, T.

Sharifzadeh, M.

M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun. 427, 609–616 (2018).
[Crossref]

Singh, J.

J. Singh and V. K. Jain, Performance Analysis of BPPM and M-ary PPM Optical Communication Systems in Atmospheric Turbulence, IETE Tech. Rev. 25, 146–153 (2008).
[Crossref]

Smith, D. E.

D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).

Song, Z.

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17, 1505–1509 (2018).
[Crossref]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26, 8566–8580 (2018).
[Crossref] [PubMed]

Sugiyama, H.

H. Sugiyama and K. Nosu, “MPPM: a method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7, 465–472 (1989).
[Crossref]

Tan, L.

Thejappa, G.

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676, 1338–1345 (2008).
[Crossref]

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
[Crossref]

Viswanath, A.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
[Crossref]

Wang, C. P.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Wang, G.

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

Wang, J.

Wang, P.

Wang, R.

Wang, W.

Wang, X.

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

Wang, Y.

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

Wei, Z.

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

Wilson, K. E.

K. E. Wilson, “An Overview of the GOLD Experiment Between the ETS-VI Satellite and the Table Mountain Facility,” Telecommunications and Data Acquisition Progress Report,  1996, 8–19 (1996).

K. E. Wilson and J. R. Lesh, “An overview of the Galileo Optical Experiment (GOPEX),” Telecommunications and Data Acquisition Progress Report 114, 192–204 (1993).

Wing, S.

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Woo, R.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
[Crossref]

Wu, Y.

F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
[Crossref]

Xu, G.

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17, 1505–1509 (2018).
[Crossref]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26, 8566–8580 (2018).
[Crossref] [PubMed]

Xu, J.

Yang, Y.

Yin, H.

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

Yu, S.

Yun, C.

Zhang, Y.

Y. Zhang, P. Wang, T. Liu, L. Guo, Y. Li, and W. Wang, “Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence,” Opt. Express 26, 22182–22196 (2018).
[Crossref] [PubMed]

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

Zhao, A.

Zhao, J.

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

Zhao, S. H.

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

Zhao, W. H.

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

Zhao, Y.

Zhu, L.

Zuber, M. T.

D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).

Adv. Space Res. (1)

A. I. Efimov, L. Samoznaev, M. Bird, I. Chashei, and D. Plettemeier, “Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments,” Adv. Space Res. 42, 117–123 (2008).
[Crossref]

Appl. Opt. (2)

Astrophys. J. (1)

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676, 1338–1345 (2008).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17, 1505–1509 (2018).
[Crossref]

IEEE Commun. Surv. Tutor. (2)

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014).
[Crossref]

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19, 57–96 (2017).
[Crossref]

IEEE Photonics J. (1)

H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation,” IEEE Photonics J. 7, 7201510 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The cassini may 2000 solar conjunction,” IEEE Trans. Antennas Propag. 51, 201–219 (2003).
[Crossref]

IEEE Trans. Commun. (2)

M. V. Jamali, A. Mirani, A. Parsay, B. Abolhassani, P. Nabavi, A. Chizari, P. Khorramshahi, S. Abdollahramezani, and J. A. Salehi, “Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations,” IEEE Trans. Commun. 66, 4706–4723 (2018).

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[Crossref]

IET Commun. (1)

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9, 2253–2258 (2015).
[Crossref]

IETE Tech. Rev. (1)

J. Singh and V. K. Jain, Performance Analysis of BPPM and M-ary PPM Optical Communication Systems in Atmospheric Turbulence, IETE Tech. Rev. 25, 146–153 (2008).
[Crossref]

J. Geophys. Res. Planet. (1)

D. E. Smith, M. T. Zuber, and J. B. Abshire, “Mars Observer laser altimeter investigation,” J. Geophys. Res. Planet. 97, 7781–7797 (1993).

J. Lightwave Technol. (1)

H. Sugiyama and K. Nosu, “MPPM: a method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7, 465–472 (1989).
[Crossref]

J. Mod. Opt. (1)

D. Liu, Y. Wang, X. Luo, G. Wang, and H. Yin, “Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence,” J. Mod. Opt. 64, 1579–1587 (2017).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Commun. (4)

H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and S. Sampei, “SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels,” Opt. Commun. 356, 530–535 (2015).
[Crossref]

Y. Zhang, X. Wang, S. H. Zhao, J. Zhao, and B. Y. Deng, “On the performance of 2x2 DF relay mixed RF/FSO airborne system over Exponentiated Weibull fading channel,” Opt. Commun. 425, 190–195 (2018).
[Crossref]

J. Zhao, S. H. Zhao, W. H. Zhao, Y. Liu, and X. Li, “Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels,” Opt. Commun. 405, 244–252 (2017).
[Crossref]

M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun. 427, 609–616 (2018).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

F. Li, Z. Hou, and Y. Wu, “Experiment and numerical evaluation of bit error rate for free-space communication in turbulent atmosphere,” Opt. Laser Technol. 45, 104–109 (2013).
[Crossref]

Opt. Lett. (1)

Proceedings of SPIE - The International Society for Optical Engineering (1)

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: Overview of NASA’s Mars laser communications demonstration system,” Proceedings of SPIE - The International Society for Optical Engineering,  2004, 5338 (2004).

Radio Sci. (1)

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43, RS2003 (2008).
[Crossref]

Sol. Phys. (1)

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245, 355–367 (2007).
[Crossref]

Space Sci. Rev. (1)

S. Wing, J. R. Johnson, C. C. Chaston, M. Echim, C. P. Escoubet, B. Lavraud, C. Lemon, K. Nykyri, A. Otto, J. Raeder, and C. P. Wang, “Review of Solar Wind Entry into and Transport Within the Plasma Sheet,” Space Sci. Rev. 184, 33–86 (2014).
[Crossref]

Telecommunications and Data Acquisition Progress Report (2)

K. E. Wilson and J. R. Lesh, “An overview of the Galileo Optical Experiment (GOPEX),” Telecommunications and Data Acquisition Progress Report 114, 192–204 (1993).

K. E. Wilson, “An Overview of the GOLD Experiment Between the ETS-VI Satellite and the Table Mountain Facility,” Telecommunications and Data Acquisition Progress Report,  1996, 8–19 (1996).

Other (2)

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (NASA, 2000).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Deep space FSO communication between the Earth and probe during superior solar conjunction.
Fig. 2
Fig. 2 BER versus scintillation index for different values of M.
Fig. 3
Fig. 3 BER versus scintillation index for different values of G.
Fig. 4
Fig. 4 BER versus scintillation index for different values of Ks.
Fig. 5
Fig. 5 BER versus the wavelength, λ, for different values of the outer scale.
Fig. 6
Fig. 6 BER versus the wavelength, λ, for different values of the spectral index.
Fig. 7
Fig. 7 BER versus the heliocentric distance, r, for different data bit rates.
Fig. 8
Fig. 8 BER versus the heliocentric distance, r, for different equivalent load resistors.
Fig. 9
Fig. 9 BER versus the SNR, γ, for different scintillation indices, m2, with 4PPM and BPSK.

Tables (1)

Tables Icon

Table 1 Parameters used in the real FSO communication systems in deep space missions.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

δ ε ( r ) = r e λ 2 π δ N e ( r ) .
χ 2 = 16 π 4 r e   2 k 2 0 κ d κ 0 L sin  2 ( z κ 2 2 k ) Φ N ( κ , z ) d z .
Φ N ( κ ) = ( 2 π ) 3 / 2 ( p 3 ) Γ ( p / 2 ) Γ [ ( p 1 ) / 2 ] κ o p 3 δ N e 2 κ p ,
N e ( r ) = 4 × 10 14 ( R s u n r ) 10 + 3 × 10 14 ( R s u n r ) 6
χ 2 = ( p 3 ) Γ ( p / 2 ) r e   2 ( 2 π ) 11 / 2 p π 8 Γ [ ( p 1 ) / 2 ] Γ ( 1 + p / 2 ) η 2 N e   2 L o   3 p L p 2 k p 2 1 sec   ( π p / 4 ) .
y ( t ) = q n = G n x ( t t n ) + n ( t )
K s = 1 2 ρ λ P r c T w
f ( K s ) = 1 2 π σ k 2 K s exp  { [ ln  ( K s ) n k ] 2 2 σ k 2 } ,
P b = 0 Q ( Ξ ( K s ) ) f ( K s ) d K s ,
Ξ ( K s ) = ( G q ) 2 K s   2 ( G q ) 2 F ( K s + 2 K b g ) + 2 σ t h 2
P b 1 π i = 1 N w i Q { exp  [ 2 ( 2 σ k x i + n k ) ] F exp  ( 2 σ k x i + n k ) + K n } ,
T s = T b log  2 M M
P b M M 2 π i = 1 n w i Q { exp  [ 2 ( 2 m k x i + n k ) ] F exp  ( 2 m k x i + n k ) + K n } .

Metrics