Abstract

We present the first demonstration of visible emission from highly doped silica glass micro-ring resonators (MRRs) through a third-harmonic generation (THG) nonlinear process. We obtain green light conversion efficiency of 2.7×10−5 W−2 in a MRR with loaded Q-factor of 1.4×106 pumped in the telecom band. A thermal nonlinear model is developed to account for the in-cavity power dependence of the resonance detuning. Using the extracted thermal nonlinear coefficients, the measured TH resonance shift is calibrated by subtracting the thermal nonlinear-induced phase mismatch to obtain the theoretical threefold wavelength relationship along with the measured cubic power relationship.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]

Zhizhou Lu, Weiqiang Wang, Wenfu Zhang, Mulong Liu, Leiran Wang, Sai T. Chu, Brent E. Little, Jianguo Zhao, Peng Xie, Xinyu Wang, and Wei Zhao
Opt. Mater. Express 8(9) 2662-2669 (2018)

Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings

Joshua B. Surya, Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 5(2) 103-108 (2018)

Harmonic generation in silicon nitride ring resonators

Jacob S. Levy, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson
Opt. Express 19(12) 11415-11421 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [Crossref]
  2. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  3. K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
    [Crossref]
  4. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
    [Crossref]
  5. J. B. Surya, X. Guo, C. L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5(2), 103–108 (2018).
    [Crossref]
  6. D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
    [Crossref]
  7. M. Asano, S. Komori, R. Ikuta, N. Imoto, Ş. Özdemir, and T. Yamamoto, “Visible light emission from a silica microbottle resonator by second-and third-harmonic generation,” Opt. Lett. 41(24), 5793–5796 (2016).
    [Crossref]
  8. L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
    [Crossref]
  9. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [Crossref]
  10. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  11. B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC), 444–445 (2003).
  12. X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
    [Crossref]
  13. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, and W. Freude, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17(20), 17357–17368 (2009).
    [Crossref]
  14. C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
    [Crossref]
  15. P. H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao, D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characterization of micro-comb generation in the single-soliton regime,” Opt. Express 24(10), 10890–10897 (2016).
    [Crossref]
  16. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref]
  17. H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1(6), 396–399 (2014).
    [Crossref]
  18. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref]
  19. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas, D. E. Leaird, M. Qi, and A. M. Weiner, “Direct soliton generation in microresonators,” Opt. Lett. 42(13), 2519–2522 (2017).
    [Crossref]

2019 (1)

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (3)

2014 (3)

H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” Optica 1(6), 396–399 (2014).
[Crossref]

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref]

2011 (1)

2009 (3)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, and W. Freude, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17(20), 17357–17368 (2009).
[Crossref]

2008 (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

2007 (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

2004 (1)

Alloatti, L.

Arbabi, A.

Asano, M.

Baets, R.

Balakireva, I. V.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Bao, C.

Barucci, A.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Berneschi, S.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Biaggio, I.

Bogatscher, S.

Bowers, J. E.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Cao, Q. T.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

Chang, L.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Chembo, Y. K.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Coillet, A.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Conti, G. N.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Diederich, F.

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Dumon, P.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Farnesi, D.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Fischer, D.

Foster, M. A.

Freude, W.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref]

Goddard, L. L.

Godey, C.

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Gong, Q.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Guo, H.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Guo, X.

Ikuta, R.

Imoto, N.

Jaramillo-Villegas, J. A.

Jung, H.

Kippenberg, T. J.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Komori, S.

Koos, C.

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Leaird, D. E.

Levy, J. S.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC), 444–445 (2003).

Liu, Y. X.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Özdemir, S.

Pfeiffer, M. H.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Qi, M.

Qiu, C. W.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Righini, G.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Sasagawa, K.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Scimeca, M. L.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Soria, S.

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Stoll, R.

Surya, J. B.

Tang, H. X.

Tsuchiya, M.

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

Vallaitis, T.

Volet, N.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Wang, L.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Wang, P. H.

Wang, Z.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Weiner, A. M.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Xiao, Y. F.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Xuan, Y.

Xue, X.

Yamamoto, T.

Yang, L.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Zervas, M.

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Zhang, X.

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Zou, C. L.

Appl. Phys. Express (1)

K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator,” Appl. Phys. Express 2(12), 122401 (2009).
[Crossref]

Laser Photonics Rev. (1)

L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Nat. Photonics (4)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

X. Zhang, Q. T. Cao, Z. Wang, Y. X. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (2)

Phys. Rev. A (1)

C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89(6), 063814 (2014).
[Crossref]

Phys. Rev. Lett. (1)

D. Farnesi, A. Barucci, G. Righini, S. Berneschi, S. Soria, and G. N. Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Other (1)

B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC), 444–445 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Characteristic of MRRs with cross-section geometry of 2 µm × 1µm. (a-c) Filter response (Black-dotted: TM drop; Magenta-dotted: TM through; Red-solid: drop fitting; Blue-solid: through fitting) characteristic of MRR with gap value of 0.8 µm (a), 1.0 µm (b) and 1.2 µm (c), respectively. (d) Dependence of loaded quality factor on the gap. (e) Calculated dispersion of the fundamental quasi-TE and quasi-TM mode. Inset: Fundamental quasi-TM mode profile. (f) Nonlinearity coefficient Re(γ) times the normalized four-wave mixing efficiency η, versus wavelength detuning Δλ.
Fig. 2.
Fig. 2. (a) Effective refractive index for the fundamental pump mode and higher order TH modes of the 200 GHz MRR. (b) Mode filed distribution for the higher order modes. (c) Schematic experimental setup for the THG. A collimator is putted on top of the ring resonator to collect scattered light. (TLs: tunable laser source; OBF: optical bandpass filter; PM: power meter.) (d) 1548.85 nm pump and corresponding 516.15 nm THG spectra. Inset: Photograph of green emission from THG under pump power of ∼200 mW.
Fig. 3.
Fig. 3. C + L bands phase-matching condition and measured THG power as a function of detuning. Drop-port power (a) and THG intensity (b) dependence on pump wavelength at swept step of 2 pm. Measured cold resonances at 25 °C are plotted in gray line for quasi-TM polarization. Note that the discontinuity of x-axis between 1562 nm and 1566 nm is due to the unstable pump power in that range probably caused by mode hopping.
Fig. 4.
Fig. 4. Experimental C-band phase-matching condition and measured TH power as a function of detuning. (a) Normalized cavity thermal shift under pump power of 219.1 mW. Cold resonance is marked as blue line. Power response recorded from drop port is denoted as maroon dots and solid line. (b) Pump wavelength sweeping under different global temperatures, and its corresponding THG power. (c) THG power dependence of in-cavity power for MRRs with different gap values. (d) Microscope photo of the green emission from the three MRRs simultaneously. Gap sizes are marked below each MRR.
Fig. 5.
Fig. 5. Measured thermal nonlinear coefficient Θ versus TM pump cold resonance at 25 °C.
Fig. 6.
Fig. 6. (a) Measured and calibrated THG wavelength versus pump wavelength. (b) The corresponding in-cavity pump energy at the THG wavelength of every THG emission band maximum.
Fig. 7.
Fig. 7. In-cavity energy dependence of pump cold resonance detuning under different temperatures of TEC. Here, $\xi = 1.28 \times {10^{ - 5}}\textrm{ (1/}^\circ \textrm{C)}$, $\Theta = 3.15 \times {10^9}\textrm{ (1/pJ)}$ and $\delta {\omega _0} = {\omega _0}/{\textrm{Q}_P}$.

Tables (2)

Tables Icon

Table 1. Quality factor and conversion efficiency for optical platforms demonstrating harmonic generations.

Tables Icon

Table 2. Conversion efficiency of 200 GHz MRRs with different gap separations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ω T H = 3 ω P + Ω M 3 ω P + Θ I P
C d Δ T d t = d q g e n d t d q d i f d t = P c Q P Q a b s U Δ T ( t )
d Δ T d t = Q P C Q a b s P c U C Δ T ( t )
ω r ( Δ T ) ω 0 = 2 π c ( 1 λ r 1 λ 0 ) = ξ ( T T 0 + Δ T ) 1 + ξ ( T T 0 + Δ T ) ω 0
d φ d t = [ i Ω i ξ ( T T 0 + Δ T ) ω 0 δ ω 0 2 ] φ i ω P g | φ | 2 φ i κ p i
[ i Ω i ξ ( T T 0 + Δ T ) ω 0 δ ω 0 2 ] φ i ω p ( Θ + g ) φ = i κ p i
Q P Q a b s P c = U Δ T ( t ) = Q P Q a b s ν g I P 2 π R
Θ = Q P ξ ω 0 U Q a b s ν g 2 π R
Ω = ξ ω 0 ( T T 0 ) ( Θ + g ) I p ± κ P i I p δ ω 0 2 4

Metrics