Abstract

PMMA-based fibers are widely studied for strain measurements and show repeatable results for Fiber Bragg Gratings (FBGs) inscribed using 325 nm laser and 248 nm laser. However, there is no available material mechanical behavior characterization of the UV source impact on the fiber properties. In this manuscript, fibers are irradiated with high fluence of 325 nm and 248 nm lasers and the fibers properties are investigated using dynamic mechanical analysis and tensile strain for potential use of these fibers past the yield point. It is demonstrated that the UV sources shifted the ultimate tensile strength and changed the strain hardening behavior. Tensile strain measurements show excellent repeatability for gratings inscribed with these two sources with similar sensitivity of 1.305 nm/mɛ for FBG inscribe with 325 nm laser, and 1.345 nm/mɛ for grating written with 248 nm laser in the range 0 to 1.5 % elongation. Furthermore, tests far beyond the yield point (up to 2.8 % elongation) show that grating inscribed with lower UV wavelength exhibit hysteresis. Finally, we demonstrate that 248 nm laser fluence shall be chosen carefully whereas even high 325 nm laser fluence do not critically impact the sensor properties.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse

Luis Pereira, Rui Min, Xuehao Hu, Christophe Caucheteur, Ole Bang, Beatriz Ortega, Carlos Marques, Paulo Antunes, and João L. Pinto
Opt. Express 26(14) 18096-18104 (2018)

Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber

Xuehao Hu, Chi-Fung Jeff Pun, Hwa-Yaw Tam, Patrice Mégret, and Christophe Caucheteur
Opt. Express 22(15) 18807-18817 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804 (2018).
    [Crossref]
  2. J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
    [Crossref]
  3. A. Gierej, M. Vagenende, A. Filipkowski, B. Siwicki, R. Buczynski, H. Thienpont, S. Van Vlierberghe, T. Geernaert, P. Dubruel, and F. Berghmans, “Poly(D,L-lactic acid) (PDLLA) biodegradable and biocompatible polymer optical fiber,” J. Lightwave Technol. 37(9), 1916–1923 (2019).
    [Crossref]
  4. J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
    [Crossref]
  5. W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).
  6. J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
    [Crossref]
  7. X. Hu, C.-F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
    [Crossref]
  8. X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835 (2014).
    [Crossref]
  9. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [Crossref]
  10. Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
    [Crossref]
  11. S. D. Alshehry and I. M. I. Ismail, “PMMA degradation protection investigation using ultraviolet additive,” Orient. J. Chem. 24(1), 35–42 (2008).
  12. T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
    [Crossref]
  13. J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.
  14. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028 (2017).
    [Crossref]
  15. R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
    [Crossref]
  16. L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
    [Crossref]
  17. A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
    [Crossref]
  18. A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [Crossref]
  19. A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
    [Crossref]
  20. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  21. Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
    [Crossref]
  22. H. Y. Liu, H. Liu, and G. D. Peng, “Strain sensing characterization of polymer optical fibre Bragg gratings,” in M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds. (2005), p. 663.
  23. I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967 (2017).
    [Crossref]
  24. W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  25. X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610 (2018).
    [Crossref]
  26. Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
    [Crossref]
  27. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
    [Crossref]
  28. Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
    [Crossref]
  29. S. Eve and J. Mohr, “Study of the surface modification of the PMMA by UV-radiation,” Procedia Eng. 1(1), 237–240 (2009).
    [Crossref]
  30. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
    [Crossref]
  31. H. Lim and S. W. Hoag, “Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films,” AAPS PharmSciTech 14(3), 903–910 (2013).
    [Crossref]

2019 (1)

2018 (9)

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
[Crossref]

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610 (2018).
[Crossref]

Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
[Crossref]

2017 (4)

2014 (4)

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

X. Hu, C.-F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
[Crossref]

X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835 (2014).
[Crossref]

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

2013 (2)

H. Lim and S. W. Hoag, “Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films,” AAPS PharmSciTech 14(3), 903–910 (2013).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

2012 (3)

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

2011 (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

2010 (1)

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

2009 (1)

S. Eve and J. Mohr, “Study of the surface modification of the PMMA by UV-radiation,” Procedia Eng. 1(1), 237–240 (2009).
[Crossref]

2008 (1)

S. D. Alshehry and I. M. I. Ismail, “PMMA degradation protection investigation using ultraviolet additive,” Orient. J. Chem. 24(1), 35–42 (2008).

2007 (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

1993 (1)

T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
[Crossref]

Alshehry, S. D.

S. D. Alshehry and I. M. I. Ismail, “PMMA degradation protection investigation using ultraviolet additive,” Orient. J. Chem. 24(1), 35–42 (2008).

André, P.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Antunes, P.

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804 (2018).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028 (2017).
[Crossref]

I.-L. Bundalo, K. Nielsen, G. Woyessa, and O. Bang, “Long-term strain response of polymer optical fiber FBG sensors,” Opt. Mater. Express 7(3), 967 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Berghmans, F.

Boles, S. T.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Bonefacino, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610 (2018).
[Crossref]

J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
[Crossref]

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Bremer, K.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
[Crossref]

Broadway, C.

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

Buczynski, R.

Bundalo, I.-L.

Caucheteur, C.

Chan, W. E.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Chan, W.-K.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Cheng, X.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610 (2018).
[Crossref]

J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
[Crossref]

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Dubruel, P.

Elashnikov, R.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Engineering, I.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Eve, S.

S. Eve and J. Mohr, “Study of the surface modification of the PMMA by UV-radiation,” Procedia Eng. 1(1), 237–240 (2009).
[Crossref]

Fasano, A.

Filipkowski, A.

Frizera, A.

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804 (2018).
[Crossref]

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

Frizera-Neto, A.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
[Crossref]

Fueki, K.

T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
[Crossref]

Geernaert, T.

Gierej, A.

Glen, T.

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Glen, T. S.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Guan, B. O.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

He, J.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hoag, S. W.

H. Lim and S. W. Hoag, “Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films,” AAPS PharmSciTech 14(3), 903–910 (2013).
[Crossref]

Hom, H.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Hong, T.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Hu, X.

Ismail, I. M. I.

S. D. Alshehry and I. M. I. Ismail, “PMMA degradation protection investigation using ultraviolet additive,” Orient. J. Chem. 24(1), 35–42 (2008).

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Kalachyova, Y.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Leal-Junior, A.

Leal-Junior, A. G.

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

Lee, P.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Lim, H.

H. Lim and S. W. Hoag, “Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films,” AAPS PharmSciTech 14(3), 903–910 (2013).
[Crossref]

Liu, H.

H. Y. Liu, H. Liu, and G. D. Peng, “Strain sensing characterization of polymer optical fibre Bragg gratings,” in M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds. (2005), p. 663.

Liu, H. Y.

H. Y. Liu, H. Liu, and G. D. Peng, “Strain sensing characterization of polymer optical fibre Bragg gratings,” in M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds. (2005), p. 663.

Lu, C.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Luo, Y.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Lyutakov, O.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Markos, C.

Marques, C.

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

Marques, C. A. F.

Mégret, P.

Min, R.

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

Mitsuoka, T.

T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
[Crossref]

Mohr, J.

S. Eve and J. Mohr, “Study of the surface modification of the PMMA by UV-radiation,” Procedia Eng. 1(1), 237–240 (2009).
[Crossref]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

Ortega, B.

L. Pereira, R. Min, X. Hu, C. Caucheteur, O. Bang, B. Ortega, C. Marques, P. Antunes, and J. L. Pinto, “Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse,” Opt. Express 26(14), 18096 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

Peng, G. D.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

H. Y. Liu, H. Liu, and G. D. Peng, “Strain sensing characterization of polymer optical fibre Bragg gratings,” in M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds. (2005), p. 663.

Peng, G.-D.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Pereira, L.

Peters, K.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Pinto, J. L.

Polytechnic, K.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Pontes, M.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
[Crossref]

Pontes, M. J.

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

A. Leal-Junior, A. Frizera, M. J. Pontes, A. Fasano, G. Woyessa, O. Bang, and C. A. F. Marques, “Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials,” Opt. Mater. Express 8(4), 804 (2018).
[Crossref]

Pospori, A.

Pun, C. F. J.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Pun, C. J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Pun, C.-F. J.

Rasmussen, H. K.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Roth, B.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
[Crossref]

Sáez-Rodríguez, D.

Savovic, S.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Siwicki, B.

Slepicka, P.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7(1), 286 (2017).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Svorcik, V.

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Tam, H. Y.

X. Cheng, J. Bonefacino, B. O. Guan, and H. Y. Tam, “All-polymer fiber-optic pH sensor,” Opt. Express 26(11), 14610 (2018).
[Crossref]

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

X. Hu, C.-F. J. Pun, H. Y. Tam, P. Mégret, and C. Caucheteur, “Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber,” Opt. Express 22(15), 18807–18817 (2014).
[Crossref]

Tam, H.-Y.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
[Crossref]

X. Hu, C.-F. J. Pun, H.-Y. Tam, P. Mégret, and C. Caucheteur, “Tilted Bragg gratings in step-index polymer optical fiber,” Opt. Lett. 39(24), 6835 (2014).
[Crossref]

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Tao, X. M.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Thienpont, H.

Torikai, A.

T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
[Crossref]

Tse, M. V.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Tse, M.-L.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Tse, M.-L. V.

J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
[Crossref]

Vagenende, M.

Van Vlierberghe, S.

Wai, P. K. A.

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Wai, P.-K.

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

Wang, G. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Wang, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Wang, T.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Webb, D. J.

Woyessa, G.

Wu, W.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, C.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Zhang, Q.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Zhang, Z. F.

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

Zheng, Y.

Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
[Crossref]

Zhu, B.

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

AAPS PharmSciTech (1)

H. Lim and S. W. Hoag, “Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films,” AAPS PharmSciTech 14(3), 903–910 (2013).
[Crossref]

Adv. Opt. Mater. (1)

J. He, W.-K. Chan, X. Cheng, M.-L. Tse, C. Lu, P.-K. Wai, S. Savovic, and H.-Y. Tam, “Experimental and Theoretical Investigation of the Polymer Optical Fiber Random Laser with Resonant Feedback,” Adv. Opt. Mater. 6(7), 1701187 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonefacino, X. Cheng, M.-L. V. Tse, and H.-Y. Tam, “Recent Progress in Polymer Optical Fiber Light Sources and Fiber Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 252–262 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. F. Zhang, C. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing,” IEEE Photonics Technol. Lett. 22(21), 1562–1564 (2010).
[Crossref]

R. Min, B. Ortega, X. Hu, C. Broadway, C. Caucheteur, C.-F. J. Pun, H.-Y. Tam, P. Antunes, and C. Marques, “Bragg Gratings Inscription in TS-Doped PMMA POF by Using 248-nm KrF Pulses,” IEEE Photonics Technol. Lett. 30(18), 1609–1612 (2018).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

IEEE Sens. J. (2)

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic Characterization of Polymer Optical Fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. G. Leal-Junior, C. Marques, A. Frizera, and M. J. Pontes, “Dynamic Mechanical Analysis on a PolyMethyl Methacrylate (PMMA) Polymer Optical Fiber,” IEEE Sens. J. 18(6), 2353–2361 (2018).
[Crossref]

J. Appl. Polym. Sci. (1)

T. Mitsuoka, A. Torikai, and K. Fueki, “Wavelength sensitivity of the photodegradation of poly(methyl methacrylate),” J. Appl. Polym. Sci. 47(6), 1027–1032 (1993).
[Crossref]

J. Lightwave Technol. (1)

Light: Sci. Appl. (1)

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C. J. Pun, J. Wang, P. Lee, M. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light: Sci. Appl. 7(3), 17161 (2018).
[Crossref]

Meas. Sci. Technol. (1)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[Crossref]

Nanoscale Res. Lett. (1)

Y. Kalachyova, O. Lyutakov, P. Slepicka, R. Elashnikov, and V. Svorcik, “Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser,” Nanoscale Res. Lett. 9(1), 591 (2014).
[Crossref]

Opt. Commun. (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Y. Luo, W. Wu, T. Wang, X. Cheng, Q. Zhang, G.-D. Peng, and B. Zhu, “Analysis of multimode BDK doped POF gratings for temperature sensing,” Opt. Commun. 285(21-22), 4353–4358 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (3)

Orient. J. Chem. (1)

S. D. Alshehry and I. M. I. Ismail, “PMMA degradation protection investigation using ultraviolet additive,” Orient. J. Chem. 24(1), 35–42 (2008).

POF Plast. Opt. Fiber (1)

W. E. Chan, C. F. J. Pun, X. Cheng, M. V. Tse, P. K. A. Wai, H. Y. Tam, I. Engineering, T. Hong, K. Polytechnic, and H. Hom, “First Demonstration of Polymer Optical Fiber Random Laser,” POF Plast. Opt. Fiber 24(1), 3–6 (2014).

Procedia Eng. (1)

S. Eve and J. Mohr, “Study of the surface modification of the PMMA by UV-radiation,” Procedia Eng. 1(1), 237–240 (2009).
[Crossref]

Sensors (2)

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. Pontes, “A Polymer Optical Fiber Temperature Sensor Based on Material Features,” Sensors 18(2), 301 (2018).
[Crossref]

Y. Zheng, K. Bremer, and B. Roth, “Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating,” Sensors 18(5), 1436 (2018).
[Crossref]

Other (2)

H. Y. Liu, H. Liu, and G. D. Peng, “Strain sensing characterization of polymer optical fibre Bragg gratings,” in M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds. (2005), p. 663.

J. Bonefacino, T. Glen, X. Cheng, S. T. Boles, and H.-Y. Tam, “Ultrafast fiber Bragg grating inscription in DPDS-core doped POF using 325 nm laser,” in Micro-Structured and Specialty Optical Fibres VI, P. Peterka, K. Kalli, and A. Mendez, eds. (SPIE, 2019), (April), p. 12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Reflected peak power growth recorded within one-week post UV irradiation for FBGs inscribed using 325 nm laser (red) and 248 nm laser (blue). (b) Impact of heat on the FBG stabilization time for 200 ms FBG inscribed in 4 %mol DPDS core doped POF using 325 nm laser.
Fig. 2.
Fig. 2. Refractive index modulation recorded for (a) 4 min of 325 nm laser irradiation, and (b) four shots of 248 nm laser.
Fig. 3.
Fig. 3. Results of DMA measurements performed on unirradiated fibers (UIF), fibers irradiated with 325 nm laser (325IF), and fibers irradiated with 248 nm laser (248IF). (a) Young’ modulus measurements in the range 0.05 % to 0.25 % and (b) Stress-Strain measurements.
Fig. 4.
Fig. 4. Results for three cycles of loading and unloading between 0 to 1.5 % elongation for (a) FBG inscribed using 325 nm laser, and (b) grating inscribed using 248 nm laser.
Fig. 5.
Fig. 5. Sensitivity over three cycling tests with elongation ranging from 0 % up to 2.8 % for (a) FBG inscribed using CW 325 nm laser, and (b) grating inscribed using excimer 248 nm laser.
Fig. 6.
Fig. 6. Spectra recorded during the third cycling up to 2.8 % for (a) 325IF during loading, (b) 325IF during unloading, (c) 248IF during loading, and (d) 248IF during unloading.
Fig. 7.
Fig. 7. Wavelength and reflected peak power fluctuation post-tensile strain measurements (a) FBG inscribed using CW 325 nm laser, and (b) grating inscribed using excimer 248 nm laser.

Tables (1)

Tables Icon

Table 1. Resume of the impact of UV sources on the Young modulus, failure point and yield point of DPDS core doped PMMA fibers

Metrics