Abstract

Soliton self-frequency shifting of light pulses in fibers is used for versatile tunable light sources. Few-cycle pulses of high soliton number offer unique advantages, in particular the rate of Raman frequency shift is extremely fast. However, their dynamics is complicated, which makes the optimization of the frequency shifting difficult and sometimes counter-intuitive. We performed a systematic experimental study of the effects of initial prechirp for different pulse energies (for two different fibers). We found that a negative prechirp around C=-0.75 is the most effective (C being the chirp parameter). With such prechirping we managed to cross the severe OH absorption bands of nonlinear photonic crystal fibers. The mechanism behind the effectiveness of the prechirp appears to be the power distribution between the products of soliton fission.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss

Stephen A. Dekker, Alexander C. Judge, Ravi Pant, Itandehui Gris-Sánchez, Jonathan C. Knight, C. Martjn de Sterke, and Benjamin J. Eggleton
Opt. Express 19(18) 17766-17773 (2011)

Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift

Ravi Pant, Alexander C. Judge, Eric C. Magi, Boris T. Kuhlmey, Martijn de Sterke, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 27(9) 1894-1901 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref]
  2. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref]
  3. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [Crossref]
  4. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
    [Crossref]
  5. M. E. Masip, A. A. Rieznik, P. G. König, D. F. Grosz, A. V. Bragas, and O. E. Martinez, “Femtosecond soliton source with fast and broad spectral tunability,” Opt. Lett. 34(6), 842–844 (2009).
    [Crossref]
  6. A. Fedotov, A. Voronin, I. Fedotov, A. Ivanov, and A. Zheltikov, “Powerful wavelength-tunable ultrashort solitons in a solid-core photonic-crystal fiber,” Opt. Lett. 34(6), 851–853 (2009).
    [Crossref]
  7. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low oh loss,” Opt. Express 19(18), 17766–17773 (2011).
    [Crossref]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).
  9. A. Efimov, A. J. Taylor, F. G. Omenetto, and E. Vanin, “Adaptive control of femtosecond soliton self-frequency shift in fibers,” Opt. Lett. 29(3), 271–273 (2004).
    [Crossref]
  10. *Additional effects, such as self steepening, can also perturb the high-order soliton, but are generally less important for the fission of ultra-short pulses.
  11. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987).
    [Crossref]
  12. N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
    [Crossref]
  13. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1-6), 413–420 (2003).
    [Crossref]
  14. Z. Zhu and T. G. Brown, “Effect of frequency chirping on supercontinuum generation in photonic crystal fibers,” Opt. Express 12(4), 689–694 (2004).
    [Crossref]
  15. Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
    [Crossref]
  16. X. Hu, Y. Wang, W. Zhao, Z. Yang, W. Zhang, C. Li, and H. Wang, “Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers,” Appl. Opt. 49(26), 4984–4989 (2010).
    [Crossref]
  17. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express 18(16), 16733–16738 (2010).
    [Crossref]
  18. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B 19(9), 2165–2170 (2002).
    [Crossref]
  19. P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
    [Crossref]
  20. I. Gris-Sanchez and J. Knight, “Time-dependent degradation of photonic crystal fiber attenuation around oh absorption wavelengths,” J. Lightwave Technol. 30(23), 3597–3602 (2012).
    [Crossref]
  21. G. Zhou, M. Xin, F. X. Kaertner, and G. Chang, “Timing jitter of raman solitons,” Opt. Lett. 40(21), 5105–5108 (2015).
    [Crossref]
  22. J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
    [Crossref]
  23. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbańczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
    [Crossref]
  24. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [Crossref]
  25. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  26. D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [Crossref]
  27. P. Balla, S. Buch, and G. P. Agrawal, “Effect of raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34(6), 1247–1254 (2017).
    [Crossref]
  28. E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
    [Crossref]
  29. S. Planas, N. P. Mansur, C. B. Cruz, and H. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
    [Crossref]
  30. M. Oberthaler and R. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
    [Crossref]
  31. A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
    [Crossref]
  32. R. Driben, A. Yulin, A. Efimov, and B. Malomed, “Trapping of light in solitonic cavities and its role in the supercontinuum generation,” Opt. Express 21(16), 19091–19096 (2013).
    [Crossref]

2019 (1)

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

2017 (1)

2016 (1)

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

2015 (1)

2014 (1)

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (2)

2010 (2)

2009 (2)

2008 (2)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

2005 (1)

2004 (2)

2003 (2)

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1-6), 413–420 (2003).
[Crossref]

D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref]

2002 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

1993 (2)

S. Planas, N. P. Mansur, C. B. Cruz, and H. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
[Crossref]

M. Oberthaler and R. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

1987 (1)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987).
[Crossref]

1986 (2)

Agrawal, G. P.

P. Balla, S. Buch, and G. P. Agrawal, “Effect of raman scattering on soliton interactions in optical fibers,” J. Opt. Soc. Am. B 34(6), 1247–1254 (2017).
[Crossref]

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1-6), 413–420 (2003).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Amiranashvili, S.

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref]

Andresen, E. R.

Apolonski, A.

Balla, P.

Baltuška, A.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Bermudez, D.

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Bragas, A. V.

Brown, T. G.

Buch, S.

Chan, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Chang, G.

Chia, S.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Ciprian, D.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cruz, C. B.

de Sterke, C. M.

Dekker, S. A.

Demircan, A.

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref]

Drexler, W.

Driben, R.

Drori, J.

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Efimov, A.

Eggleton, B. J.

Fedotov, A.

Fedotov, I.

Fragnito, H.

Fuji, T.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gordon, J. P.

Gris-Sanchez, I.

Gris-Sánchez, I.

Grosz, D. F.

Hasegawa, A.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987).
[Crossref]

Hlubina, P.

Ho, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Höpfel, R.

M. Oberthaler and R. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Hu, X.

Ishii, N.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Ivanov, A.

Ivanov, A. A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Judge, A. C.

Kaertner, F. X.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Keiding, S. R.

Knight, J.

I. Gris-Sanchez and J. Knight, “Time-dependent degradation of photonic crystal fiber attenuation around oh absorption wavelengths,” J. Lightwave Technol. 30(23), 3597–3602 (2012).
[Crossref]

D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref]

Knight, J. C.

Kodama, Y.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987).
[Crossref]

Köhler, S.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

König, P. G.

Krausz, F.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

Leonhardt, U.

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Li, C.

Ling, D.

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

Liu, H.-L.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Liu, J.-Y.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Liu, T.-M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Liu, X.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

Luan, F.

D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref]

Malomed, B.

Mansur, N. P.

Martinez, O. E.

Martynkien, T.

Masip, M. E.

Metzger, T.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Mitschke, F. M.

Mollenauer, L. F.

Oberthaler, M.

M. Oberthaler and R. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

Omenetto, F. G.

Pant, R.

Planas, S.

Povazay, B.

Qiu, P.

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

Rieznik, A. A.

Rosenberg, Y.

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Russell, P. S. J.

Santhanam, J.

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1-6), 413–420 (2003).
[Crossref]

Serebryannikov, E.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Silberberg, Y.

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Skryabin, D.

D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref]

Steinmeyer, G.

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref]

Sun, C.-K.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Szpulak, M.

Taylor, A. J.

Teisset, C. Y.

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Thøgersen, J.

Tsai, T.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Unterhuber, A.

Urbanczyk, W.

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

Vanin, E.

Voronin, A.

Wadsworth, W. J.

Wang, H.

Wang, K.

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

Wang, Y.

Xin, M.

Xu, C.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

Xu, Y.

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

Yang, Z.

Ye, H.

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

Yulin, A.

Zhang, G.

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

Zhang, W.

Zhao, W.

Zhavoronkov, N.

Zheltikov, A.

A. Fedotov, A. Voronin, I. Fedotov, A. Ivanov, and A. Zheltikov, “Powerful wavelength-tunable ultrashort solitons in a solid-core photonic-crystal fiber,” Opt. Lett. 34(6), 851–853 (2009).
[Crossref]

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Zheltikov, A. M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Zhou, G.

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Oberthaler and R. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017–1019 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23(5), 510–524 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2-to 2.2-μm tunable raman soliton source based on a cr: forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222(1-6), 413–420 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Optik (1)

Y. Xu, H. Ye, D. Ling, and G. Zhang, “Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers,” Optik 127(3), 1111–1115 (2016).
[Crossref]

Phys. Rev. A (2)

P. Qiu and K. Wang, “Wavelength-separation-tunable two-color-soliton-pulse generation through prechirping,” Phys. Rev. A 90(4), 043813 (2014).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Phys. Rev. E (1)

N. Ishii, C. Y. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E 74(3), 036617 (2006).
[Crossref]

Phys. Rev. Lett. (2)

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[Crossref]

J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U. Leonhardt, “Observation of stimulated hawking radiation in an optical analogue,” Phys. Rev. Lett. 122(1), 010404 (2019).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. Skryabin, F. Luan, J. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013).

*Additional effects, such as self steepening, can also perturb the high-order soliton, but are generally less important for the fission of ultra-short pulses.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. A 7.5 fs pulse is injected into one of two PCFs (photonic crystal fibers) types of variable length, while scanning its chirp and power. A SPIDER (Spectral Phase Interferometry for Direct Electric-field Reconstruction) analyzes the input beam, and two spectrometers analyze the output beam via an integrating sphere and a spliced multi-mode fiber. Insets show initial spectrum (bottom left), an output spectrum (top right), and measured group velocity dispersion (GVD, bottom right) of "fiber A": NKT Photonics NL-1.9-765. DCM – Dispersion compensating mirrors. $\frac {\lambda }{2}$ - Half-wave plate. P – Polarizer. NIR – Near infrared.
Fig. 2.
Fig. 2. Results for 28 cm "fiber A". (a): Representative output spectra for various chirp parameters (C, see text) and input peak power of $ {81}\;{\textrm{kw}}$ ($\textrm {N}\approx 3$). Dashed lines and $\textrm {P}_1, \textrm {P}_2, \textrm {P}_3$ mark the spectral regions used to obtain the corresponding curves in (c). (b): Central wavelength of the shortest soliton as a function of input chirp and input power (color corresponds to input soliton number (N) at 800 nm wavelength. Peak power difference between consecutive curves is about 4.3 kW). Larger redshifts are obtained for increasing power, regardless of initial chirp. The optimal chirp changes from slightly positive to about $\textrm {C}=-0.75$ for $\textrm {N}>2.5$, enabling to pass the $\textrm {OH}^-$ absorption barrier (black dotted line). (c): Total spectral power as a fraction of overall power (solid curves) and shortest soliton central wavelength (dash-dotted curve) for the same input power as (a). Secondary pulses power ($\textrm {P}_2$) are inversely related to shortest soliton wavelength. Overall power is constant up to few percents.
Fig. 3.
Fig. 3. Measured spectra for different lengths of "fiber A" and pulse parameters. Top figures are for the same input peak power (P) as in Figs. 2(a) and 2(c), but different input chirp parameter (C). The first two spectra are for fiber lengths of 1 mm and 1.2 cm. Bottom figure compares the input spectrum to those after 1 mm, for the same power and the given chirp parameters. Spectral compression is seen for $\textrm {C}=-1.5$.
Fig. 4.
Fig. 4. Comparison of measured Raman soliton spectra for different lengths of "fiber A" and input pulse parameters as specified in each figure. (a): We find high similarity throughout for transform limited pulses (dark colored with blue diamonds) and negative chirp with reduced power (uncolored with black crosses). (b): The optimal negative chirp for $L< {30}\;{\textrm{cm}}$ produces spectra marked with red stars. The optimal chirp slightly shifts for longer fibers, generating the light colored spectra with black circles.
Fig. 5.
Fig. 5. Measured spectra after 2 m of "fiber B" for various input powers. Chirp parameters are $\textrm {C}=-0.75$ and $\textrm {C}=-0.08$ for figures (a) and (b), respectively. Dashed line at 1400 nm marks the severe $\textrm {OH}^-$ absorption band.

Metrics