Abstract

A multi-pulse sampling dual-comb ranging (MS-DCR) method is proposed in this paper. Four sampling pulses and two signal pulses separated in the time domain are generated in a repetition period by fiber delay. Through multi-pulse linear optical sampling, eight cross-correlation interferograms (IGMs) are generated in an updating period. The proposed method realizes the multiplication of IGMs so that additional ranging results can be obtained. The experimental results demonstrate that we suppress any random noise by averaging the ranging results and improve the precision of the time-of-flight (TOF) method and carrier-wave interferometric (CWI) method simultaneously. The precision of TOF is improved from 3.85 µm to 1.39 µm without time averaging and that of CWI is improved from 25 nm to 11 nm. The TOF result can link to the interferometric phase with 15 ms averaging, and a precision of 0.48 nm is reached with 0.5 s averaging. The proposed technique overcomes the limitations of linear optical sampling in conventional dual-comb interferometers and achieves faster and higher precision distance measurements without decreasing the unambiguity range.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement

Siyu Zhou, Shilin Xiong, Zebin Zhu, and Guanhao Wu
Opt. Express 27(16) 22868-22876 (2019)

Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement

Zebin Zhu, Guangyao Xu, Kai Ni, Qian Zhou, and Guanhao Wu
Opt. Express 26(5) 5747-5757 (2018)

Two-color phase-stable dual-comb ranging without precise environmental sensing

Zebin Zhu, Kai Ni, Qian Zhou, and Guanhao Wu
Opt. Express 27(4) 4660-4671 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  4. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  5. T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
    [Crossref]
  6. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref]
  7. E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
    [Crossref]
  8. E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
    [Crossref]
  9. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
    [Crossref]
  10. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  11. Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Two-color phase-stable dual-comb ranging without precise environmental sensing,” Opt. Express 27(4), 4660–4671 (2019).
    [Crossref]
  12. Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
    [Crossref]
  13. G. Wu, S. Xiong, K. Ni, Z. Zhu, and Q. Zhou, “Parameter optimization of a dual-comb ranging system by using a numerical simulation method,” Opt. Express 23(25), 32044–32053 (2015).
    [Crossref]
  14. Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Digital correction method for realizing a phase-stable dual-comb interferometer,” Opt. Express 26(13), 16813–16823 (2018).
    [Crossref]
  15. I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref]
  17. Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
    [Crossref]
  18. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [Crossref]
  19. G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
    [Crossref]
  20. N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
    [Crossref]
  21. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
    [Crossref]
  22. H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
    [Crossref]
  23. H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
    [Crossref]
  24. S. Zhou, S. Xiong, Z. Zhu, and G. Wu, “Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement,” Opt. Express 27(16), 22868–22876 (2019).
    [Crossref]
  25. Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
    [Crossref]
  26. M. G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
    [Crossref]
  27. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref]
  28. D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43(15), 3614–3617 (2018).
    [Crossref]
  29. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
    [Crossref]
  30. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
    [Crossref]
  31. A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25(25), 31730–31738 (2017).
    [Crossref]

2019 (4)

Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Two-color phase-stable dual-comb ranging without precise environmental sensing,” Opt. Express 27(4), 4660–4671 (2019).
[Crossref]

S. Zhou, S. Xiong, Z. Zhu, and G. Wu, “Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement,” Opt. Express 27(16), 22868–22876 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

2018 (10)

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref]

M. G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43(15), 3614–3617 (2018).
[Crossref]

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Digital correction method for realizing a phase-stable dual-comb interferometer,” Opt. Express 26(13), 16813–16823 (2018).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

2017 (4)

2016 (3)

2015 (2)

2014 (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

2013 (2)

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

2012 (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

2010 (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

2009 (2)

S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Asahara, A.

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Baumann, E.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Bergeron, H.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Cao, H.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Carlson, D. R.

Chai, L.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Chen, G. Y.

Chen, Z.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

Coddington, I.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Cole, D. C.

Deschênes, J.-D.

Diddams, S. A.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43(15), 3614–3617 (2018).
[Crossref]

Durán, V.

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Genest, J.

Giorgetta, F. R.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Hänsch, T. W.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hariki, T.

Hase, E.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Hébert, N. B.

Herman, D.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Hickstein, D. D.

Hsieh, Y.-D.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Hu, M.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref]

Ichikawa, R.

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

Inaba, H.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Iwata, T.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Kaneoka, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Khurmi, C.

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kim, S.-W.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Kim, Y.-J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kippenberg, T. J.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kobayashi, Y.

Kondo, K. I.

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kuse, N.

Lancaster, D. G.

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Li, R.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Li, Y.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Liang, F.

Lipson, M.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Liu, B.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Loncar, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Minamikawa, T.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Minoshima, K.

Miyamoto, S.

Mizuno, T.

Mizutani, Y.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Nakagawa, K.

Nakajima, Y.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Newbury, N. R.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Ni, K.

Nishiyama, A.

Okubo, S.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Onae, A.

Ozawa, A.

Papp, S. B.

Pfeiffer, M. H. P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Picqué, N.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Sasada, H.

Sato, K.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Shi, H.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref]

Shibuya, K.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Song, Y.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref]

Suh, M. G.

M. G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Swann, W.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Teleanu, E. L.

Tian, H.

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Torres-Company, V.

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Vahala, K. J.

M. G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref]

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Wu, G.

Xiong, S.

Xu, G.

Xu, L.

Yamamoto, H.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Yan, M.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

Yasui, T.

E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K. Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Scan-less confocal phase imaging based on dual-comb microscopy,” Optica 5(5), 634–643 (2018).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Ycas, G.

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

Yoshida, S.

Zhang, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Zhou, Q.

Zhou, S.

Zhu, R. R.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Zhu, Z.

Engineering (1)

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

Meas. Sci. Technol. (1)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S.-W. Kim, and Y.-J. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Nanotech. and Precis. Eng. (1)

H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, and M. Hu, “Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement,” Nanotech. and Precis. Eng. 1(4), 205–217 (2018).
[Crossref]

Nat. Commun. (3)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375–3382 (2014).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610–617 (2017).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

Nat. Photonics (5)

G. Ycas, F. R. Giorgetta, E. Baumann, I. Coddington, D. Herman, S. A. Diddams, and N. R. Newbury, “High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm,” Nat. Photonics 12(4), 202–208 (2018).
[Crossref]

S.-W. Kim, “Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

Nature (1)

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Opt. Express (11)

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
[Crossref]

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref]

A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25(25), 31730–31738 (2017).
[Crossref]

Z. Zhu, G. Xu, K. Ni, Q. Zhou, and G. Wu, “Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement,” Opt. Express 26(5), 5747–5757 (2018).
[Crossref]

Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Two-color phase-stable dual-comb ranging without precise environmental sensing,” Opt. Express 27(4), 4660–4671 (2019).
[Crossref]

S. Zhou, S. Xiong, Z. Zhu, and G. Wu, “Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement,” Opt. Express 27(16), 22868–22876 (2019).
[Crossref]

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23(11), 14057–14069 (2015).
[Crossref]

N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
[Crossref]

Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Digital correction method for realizing a phase-stable dual-comb interferometer,” Opt. Express 26(13), 16813–16823 (2018).
[Crossref]

G. Wu, S. Xiong, K. Ni, Z. Zhu, and Q. Zhou, “Parameter optimization of a dual-comb ranging system by using a numerical simulation method,” Opt. Express 23(25), 32044–32053 (2015).
[Crossref]

Opt. Lett. (2)

Optica (2)

Phys. Rev. A (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Science (2)

M. G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Principle of the MS-DCR method. Two nonlinear polarization rotation (NPR) passively mode-locked Erbium-doped fiber combs with 1 kHz repetition frequency difference are used. (a) The experimental setup: P: Polarizer; BPF: an optical filter, the bandwidth is ∼5 nm to avoid spectral aliasing; PD: photodetector; BS1–2: beam splitter; LPF: low-pass filter. The fceo of both OFCs are fully stabilized by the f−2f interferometers (fceo1 = fceo2 = 10.56 MHz). (b) Two reference and measurement signals appear in a period of 1/fr1, and four sampling pulses appear in a period of 1/fr2. These pulse trains interfere with each other and generate eight reference IGMs and eight measurement IGMs in a period of 1/Δfr.
Fig. 2.
Fig. 2. (a) Reference IGMs and Measurement IGMs of MS-DCR system during 1.4 ms. (b) 1000 IR1 are moved to the first period and shown together. The width of each IGM in the time domain is ∼0.5 µs. (c) The normalized amplitude spectrum of IR1 with an interval of Δfr = 1 kHz. (d) The parts of the amplitude spectrum in the range of 12 kHz. The resolution bandwidth (RBW) of the spectrum is 1 Hz.
Fig. 3.
Fig. 3. Principle behind the TOF and CWI methods used in MS-DCR. The TOF result (Dtof) determines the multiple integer Nc of λc/2. The unambiguity ranges of the TOF and CWI methods in MS-DCR are at the meter-scale level and submicron-scale level, respectively.
Fig. 4.
Fig. 4. (a) Jitter of Δt for 1,000 updating periods. (b) Jitter of Δφc for 1,000 updating periods. The carrier wavelength is λc ≈ 1567.193 nm. (c) Jitter of $\overline {\Delta t} $ for 1,000 updating periods. (d) Jitter of $\overline {\Delta \varphi_{\textrm{c}}} $ for 1,000 updating periods. (e) The δΔt of 8 pairs of IGMs. (f) The δΔφc of 8 pairs of IGMs.
Fig. 5.
Fig. 5. Ranging precision (Allan deviation) in DCR and MS-DCR for different averaging times, evaluated over a 1-s data. The values of TOF and CWI as well as TOF_MS and CWI_MS represent the precision of the TOF and CWI methods in the DCR and the MS-DCR systems, respectively. The TOF result of MS-DCR is sufficiently stable to link to the interferometric phase after only 15 ms averaging time compared with the 120 ms averaging time required for the DCR method.
Fig. 6.
Fig. 6. Ranging results of MS-DCR with the combined TOF and CWI methods versus the ranging results from a heterodyne interferometer. The data length is 500 ms with 4000 pairs of IGMs, and their ranging average was used for the comparison.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( t ) = I 0 ( t ) exp [ i δ φ c (t) ] ,
I ( t ) = I 1 [ t T jitter ( t ) ] exp [ i 2 π f c T jitter ( t ) ] ,
D tof = v g 2 Δ t ¯ Δ f r f r 1 ,
N c = INT ( 2 D tof λ c ) ,
D c = ( N c + Δ φ c ¯ 2 π ) λ c 2 ,

Metrics