Abstract

In this study, to fabricate diamond concave microlenses in a simple manner, an approach that combines a spin coating process with subsequent dry etching was demonstrated. First, photolithography was used to produce cylindrical holes in the photoresist layer on the diamond surface. Then, another photoresist was spin coated to fill the holes, and the concave structures with meniscus shapes were then obtained because of centrifugal force and interfacial tension. Finally, diamond concave microlenses were formed by transferring photoresist concave structures onto a diamond substrate using a dry etching technique. The fabricated diamond microlens exhibits a low surface roughness with nanometers as well as high-quality imaging and focusing performances, which is expected to have a wider range of potential applications under harsh and special conditions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of diamond microlenses by chemical reflow method

Tian-Fei Zhu, Jiao Fu, Wei Wang, Feng Wen, JingWen Zhang, RenAn Bu, MingTao Ma, and Hong-Xing Wang
Opt. Express 25(2) 1185-1192 (2017)

Two step process for the fabrication of diffraction limited concave microlens arrays

Patrick Ruffieux, Toralf Scharf, Irène Philipoussis, Hans Peter Herzig, Reinhard Voelkel, and Kenneth J. Weible
Opt. Express 16(24) 19541-19549 (2008)

Fabrication of biomimetic compound eye on single crystal diamond

Yan Liang, Tianfei Zhu, Mengjia Xi, Yan Song, Jiao Fu, Dan Zhao, Yanfeng Wang, Juan Wang, Kaiyue Wang, and Hongxing Wang
Opt. Express 27(15) 20508-20515 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
    [Crossref]
  2. T. Zhu, Z. Liu, Z. Liu, F. Li, M. Zhang, W. Wang, F. Wen, J. Wang, R. Bu, J. Zhang, and H. Wang, “Fabrication of monolithic diamond photodetector with microlenses,” Opt. Express 25(25), 31586–31594 (2017).
    [Crossref]
  3. L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
    [Crossref]
  4. M. Li, L. Wang, W. Shen, D. Wu, and Y. Bai, “Microlens array expander with an improved light intensity distribution throughperiodic submicro-scale filling for near-eye displays,” Appl. Opt. 57(5), 1026–1036 (2018).
    [Crossref]
  5. Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
    [Crossref]
  6. S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
    [Crossref]
  7. W. Liang, J. Pan, and G. J. Su, “One-lens camera using a biologically based artificial compound eye with multiple focal lengths,” Optica 6(3), 326 (2019).
    [Crossref]
  8. M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
    [Crossref]
  9. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref]
  10. X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
    [Crossref]
  11. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
    [Crossref]
  12. H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
    [Crossref]
  13. X. Cao, Y. Lu, H. Fan, H. Xia, L. Zhang, and Y. Zhang, “Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array,” Appl. Opt. 57(32), 9604–9608 (2018).
    [Crossref]
  14. C. Zhang, W. Liao, K. Yang, T. Liu, Y. Bai, L. Zhang, X. Jiang, J. Chen, Y. Jiang, H. Wang, X. Luan, H. Zhou, X. Yuan, and W. Zheng, “Fabrication of concave microlens arrays by local fictive temperature modification of fused silica,” Opt. Lett. 42(6), 1093 (2017).
    [Crossref]
  15. Z. Luo, J. Duan, and C. Guo, “Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica,” Opt. Lett. 42(12), 2358–2361 (2017).
    [Crossref]
  16. E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
    [Crossref]
  17. C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
    [Crossref]
  18. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2013).
  19. S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
    [Crossref]
  20. M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
    [Crossref]
  21. M. Karlsson and F. Nikolajeff, “Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region,” Opt. Express 11(5), 502–507 (2003).
    [Crossref]
  22. H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
    [Crossref]
  23. H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
    [Crossref]
  24. R. Patrick, S. Toralf, P. Irène, H. Hans Peter, V. Reinhard, and K. J. Weible, “Two step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16(24), 19541–19549 (2008).
    [Crossref]
  25. X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
    [Crossref]
  26. Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
    [Crossref]
  27. T. Zhu, J. Fu, W. Wang, F. Wen, J. Zhang, R. Bu, M. Ma, and H. Wang, “Fabrication of diamond microlenses by chemical reflow method,” Opt. Express 25(2), 1185–1192 (2017).
    [Crossref]
  28. L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
    [Crossref]
  29. Y. Zhang, Y. Li, L. Liu, C. Yang, Y. Chen, and S. Yu, “Demonstration of diamond microlens structures by a three-dimensional (3d) dual-mask method,” Opt. Express 25(13), 15572–15580 (2017).
    [Crossref]
  30. Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
    [Crossref]

2019 (2)

W. Liang, J. Pan, and G. J. Su, “One-lens camera using a biologically based artificial compound eye with multiple focal lengths,” Optica 6(3), 326 (2019).
[Crossref]

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

2018 (6)

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of polymer microlens array with controllable focal length by modifying surface wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref]

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

M. Li, L. Wang, W. Shen, D. Wu, and Y. Bai, “Microlens array expander with an improved light intensity distribution throughperiodic submicro-scale filling for near-eye displays,” Appl. Opt. 57(5), 1026–1036 (2018).
[Crossref]

X. Cao, Y. Lu, H. Fan, H. Xia, L. Zhang, and Y. Zhang, “Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array,” Appl. Opt. 57(32), 9604–9608 (2018).
[Crossref]

2017 (6)

2016 (2)

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

2015 (2)

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

2014 (1)

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

2011 (2)

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref]

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

2010 (1)

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

2008 (2)

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

R. Patrick, S. Toralf, P. Irène, H. Hans Peter, V. Reinhard, and K. J. Weible, “Two step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16(24), 19541–19549 (2008).
[Crossref]

2005 (2)

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

2004 (1)

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

2003 (2)

Bai, B.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

Bai, G.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Bai, Y.

Bu, R.

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Cao, L.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

Cao, X.

Chao, C.

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

Chen, J.

Chen, Q.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Chen, Y.

Choi, H.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

Choi, H. W.

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Chronis, N.

Chu, Y.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Coburn, C.

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

Dai, B.

Dawson, M.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

Dawson, M. D.

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

Ding, Y.

Dreesen, L.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Duan, J.

Fan, H.

Fan, Y.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Forrest, S. R.

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

Friel, I.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

Fu, J.

Girkin, J.

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

Girkin, J. M.

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

Griffin, C.

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Gu, E.

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Guan, K.

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Guo, C.

Guo, X.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Gurney, A. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Han, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Hans Peter, H.

Herrnsdorf, J.

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Hu, Y.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Huang, C.

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

Huang, L.

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

Huang, Y.

Irène, P.

Jeong, H. S.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Jeong, K. H.

Jiang, X.

Jiang, Y.

Jung, H.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Karlsson, M.

Kemp, A. J.

Kim, J.

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

Kim, J. H.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Kim, Y. H.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Lee, C. L.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

Lee, J.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Lee, L. P.

Li, F.

Li, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Li, M.

Li, Q.

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Li, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref]

Li, Y.

Liang, W.

Liao, W.

Liddy, M. S.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Lin, T.

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

Liu, C.

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Liu, G. L.

Liu, H.

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

S. Reilly, V. G. Savitski, H. Liu, E. Gu, M. D. Dawson, and A. J. Kemp, “Monolithic diamond raman laser,” Opt. Lett. 40(6), 930–933 (2015).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref]

Liu, L.

Liu, T.

Liu, X.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Liu, Z.

Loncar, M.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Lu, Y.

Luan, X.

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Luo, Z.

Ma, M.

Ma, Z.

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Meesala, S.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Ni, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Nikolajeff, F.

Ou, Q.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Pan, J.

Patel, P.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Patrick, R.

Petsch, S.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Qiu, W.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Qu, Y.

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Rao, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Reilly, S.

Reinhard, V.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Savitski, V. G.

Scarsbrook, G. A.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

Schuhladen, S.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Shao, J.

Shen, S.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Shen, W.

Su, G. J.

Sun, H.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Tian, H.

Tian, Z.

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Toralf, S.

Wang, H.

Wang, J.

Wang, K.

Wang, L.

Wang, M.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Wang, T.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Wang, W.

Watson, I. M.

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

Wei, P.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Weible, K. J.

Wen, F.

Wu, D.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

M. Li, L. Wang, W. Shen, D. Wu, and Y. Bai, “Microlens array expander with an improved light intensity distribution throughperiodic submicro-scale filling for near-eye displays,” Appl. Opt. 57(5), 1026–1036 (2018).
[Crossref]

Wu, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Xia, H.

Xu, B.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Xu, Q.

Yang, C.

Yang, K.

Yang, L.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Yang, Z.

Yoon, D. K.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Yoon, E. K.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Yoon, J.

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Yu, L.

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

Yu, S.

Yu, W.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Yu, Y.

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Yuan, X.

Zaitsev, A. M.

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2013).

Zappe, H.

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Zhang, C.

Zhang, D.

Zhang, J.

Zhang, L.

Zhang, M.

Zhang, Y.

Zheng, W.

Zhou, H.

Zhou, L.

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

Zhu, T.

Zhuang, S.

ACS Photonics (1)

Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays,” ACS Photonics 5(6), 2453–2458 (2018).
[Crossref]

Adv. Mater. (1)

Y. H. Kim, J. Lee, H. S. Jeong, J. H. Kim, E. K. Yoon, D. K. Yoon, J. Yoon, and H. Jung, “Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays,” Adv. Mater. 22(22), 2416–2420 (2010).
[Crossref]

Adv. Opt. Mater. (1)

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, and J. Li, “All-glass 3d optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6(9), 1701299 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. Zhou, G. Bai, X. Guo, S. Shen, Q. Ou, and Y. Fan, “Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure,” Appl. Phys. Lett. 112(20), 201902 (2018).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84(15), 2754–2756 (2004).
[Crossref]

Diamond Relat. Mater. (1)

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Relat. Mater. 17(7-10), 1292–1296 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, “Sapphire concave microlens arrays for high-fluence pulsed laser homogenization,” IEEE Photonics Technol. Lett. 31(20), 1615–1618 (2019).
[Crossref]

J. Appl. Phys. (1)

H. Choi, E. Gu, C. Liu, J. Girkin, and M. Dawson, “Fabrication and evaluation of gan negative and bifocal microlenses,” J. Appl. Phys. 97(6), 063101 (2005).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

H. W. Choi, E. Gu, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, and M. D. Dawson, “Fabrication of natural diamond microlenses by plasma etching,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 23(1), 130–132 (2005).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

H. Liu, J. Herrnsdorf, E. Gu, and M. D. Dawson, “Control of edge bulge evolution during photoresist reflow and its application to diamond microlens fabrication,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 34(2), 021602 (2016).
[Crossref]

Laser Photonics Rev. (1)

X. Liu, Q. Chen, K. Guan, Z. Ma, Y. Yu, Q. Li, Z. Tian, and H. Sun, “Dry-etching-assisted femtosecond laser machining,” Laser Photonics Rev. 11(3), 1600115 (2017).
[Crossref]

Light: Sci. Appl. (1)

S. Petsch, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Nat. Commun. (1)

M. J. Burek, Y. Chu, M. S. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Optica (1)

RSC Adv. (1)

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Soft Matter (1)

L. Huang, T. Lin, C. Huang, and C. Chao, “Photopolymerized self-assembly microlens arrays based on phase separation,” Soft Matter 7(6), 2812–2816 (2011).
[Crossref]

Other (1)

A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of diamond concave microlenses fabrication process: (a) spin coating of SPR 220-7.0 photoresist on the diamond substrate; (b) photolithography to form cylindrical holes; (c) coating of AZ 5214 photoresist on the holes; (d) formation of concave meniscus structures by a spinning process; (e) transfer of the concave meniscus structures onto the diamond by dry etching.
Fig. 2.
Fig. 2. (a) OM image of PR concave structures by objective lens with a magnification of $\times$ 20. (b) Cross-sectional profile along the black dot-dashed line in Fig. 2(a).
Fig. 3.
Fig. 3. 3D images of (a) four close-packed diamond concave microlenses and (b) a single diamond concave microlens using a white light interferometer measurement. (c) Cross-sectional profiles along the black dot-dashed line in Fig. 3(b).
Fig. 4.
Fig. 4. Simplified setups for the (a) imaging and (b) focusing performance measurements. (c) Image projected by diamond concave microlenses through the objective lens with a magnification of $\times$ 10. 3D light intensity distributions of (d) the focusing image by objective lens with a magnification of $\times$ 50 in the insert graph and (e) simulated focal spot in the insert graph (Scale bar = 20 µm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = R O C n 1 ,
N A = D 2 f ,

Metrics