Abstract

We propose a well-integrated, high-efficiency, high-precision, and non-destructive differential confocal measurement method for the multi-geometric parameters of the inner and outer spherical surfaces of laser fusion capsules. Based on the laser differential confocal measurement system with high tomography fixed-focus ability and high spatial resolution, the proposed method is used to perform the fixed-focus trigger measurement of the outer vertex, the inner vertex, and the spherical center of the capsule. From the rotation measurement around the Y-axis and the transposition measurement around the Z-axis, the inner and outer diameters, the three-dimensional inner and outer profiles, the shell thickness uniformity, and the shell non-concentricity of the capsule are measured with high precision and no damage. To the best of our knowledge, this is the first method to achieve the high-precision measurement for the multi-geometric parameters of the capsule inner and outer spherical surfaces with the same instrument.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser differential confocal inner-surface profile measurement method for an ICF capsule

Longxiao Wang, Lirong Qiu, Weiqian Zhao, Xianxian Ma, Shaobai Li, Dangzhong Gao, Jie Meng, and Qi Wang
Opt. Express 25(23) 28510-28523 (2017)

Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule

Shaobai Li, Yun Wang, Qi Wang, Xianxian Ma, Longxiao Wang, Weiqian Zhao, and Xusheng Zhang
Appl. Opt. 57(14) 3761-3769 (2018)

Laser differential confocal interference multi-parameter comprehensive measurement method and its system for spherical lens

Weiqian Zhao, Lirong Qiu, Yang Xiao, and Jiamiao Yang
Opt. Express 24(20) 22813-22829 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
    [Crossref]
  2. B. Philip, “Laser fusion eaperiment extracts net energy from fuel,” Nature12, 10.1038/nature.2014.14710 (2014).
  3. R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).
    [Crossref]
  4. H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
    [Crossref]
  5. R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
    [Crossref]
  6. C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
    [Crossref]
  7. K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
    [Crossref]
  8. B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
    [Crossref]
  9. R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
    [Crossref]
  10. J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
    [Crossref]
  11. R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
    [Crossref]
  12. R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
    [Crossref]
  13. Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
    [Crossref]
  14. Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
    [Crossref]
  15. Project Staff, “Inertial Confinement Fusion Target Component Fabrication and Technology Development Support, Annual Report to the U.S. Department of Energy,” General Atomics Report GA-A23240 (1999).
  16. W. Q. Zhao, J. B. Tan, and L. R. Qiu, “Bipolar Absolute Differential Confocal Approach to Higher Spatial Resolution,” Opt. Express 12(21), 5013–5021 (2004).
    [Crossref]
  17. W. Q. Zhao, R. D. Sun, L. R. Qiu, and D. G. Sha, “Laser differential confocal radius measurement,” Opt. Express 18(3), 2345–2360 (2010).
    [Crossref]
  18. S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Repid measurement and compensation method of eccentricity in autumatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
    [Crossref]

2018 (2)

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Repid measurement and compensation method of eccentricity in autumatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
[Crossref]

2017 (1)

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

2016 (1)

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).
[Crossref]

2015 (1)

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

2014 (1)

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

2013 (1)

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

2012 (1)

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

2010 (2)

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

W. Q. Zhao, R. D. Sun, L. R. Qiu, and D. G. Sha, “Laser differential confocal radius measurement,” Opt. Express 18(3), 2345–2360 (2010).
[Crossref]

2007 (1)

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

2006 (1)

R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
[Crossref]

2005 (1)

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

2004 (1)

2000 (2)

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
[Crossref]

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Atherton, L. J.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Barty, A.

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

Benage, J. F.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Bernat, T. P.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Betti, R.

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).
[Crossref]

Bittner, D. N.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Brachais, C.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Bradley, D. K.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Callahan, D. A.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Chayahara, A.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Collins, G. W.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Couvercelle, J.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Craxton, R. S.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Dewald, E. L.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Divol, L.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Dixit, S. N.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Dzenitis, E.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Edwards, M. J.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Elasky, L. M.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Fleury, E.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Fooks, J. A.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Fujiwara, N.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Fukuyama, Y.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Gao, D.

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

Gibson, J.

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
[Crossref]

Glebov, V.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Glenzer, S. H.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Guilot, L.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Habchi, C.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Haines, B. M.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Hakel, P.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Hammel, B. A.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Hamza, A. V.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Harding, D. R.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Haynam, C. A.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Hinkel, D. E.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Hironaka, Y.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Hoppe, M.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Hoppe, M. L.

R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
[Crossref]

Hurricane, O. A.

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).
[Crossref]

Igumenshchev, I. V.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Iwan, L. S.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Kagan, G.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Kalantar, D. H.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Kato, H.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Keck, R. L.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Kilkenny, J. D.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Kline, J. L.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Koch, J. A.

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Kozioziemski, B. J.

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Kyraka, G. A.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Landen, O. L.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Lattaud, C.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Lee, Y.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Legaie, O.

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Lei, H.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Lepape, S.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Li, J.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Li, S.

Li, X. Y.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Li, Y. Q.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Lin, W.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Lindl, J. D.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Liu, X.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Liu, Y.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Liu, Y. Y.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Lund, L. D.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Ma, X.

S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Repid measurement and compensation method of eccentricity in autumatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
[Crossref]

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

MacGrowan, B. J.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Mackinnon, A. J.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Mancini, R. C.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Marshall, F. J.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Martz, H. E.

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

Meezan, N. B.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Meng, J.

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

Michel, D. T.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Michel, P.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Miyanishi, K.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Mokuno, Y.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Moody, J. D.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Moses, E. I.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Mroczkowski, T.

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
[Crossref]

Murphy, T. J.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Nikroo, A.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Ohmagari, S.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Parham, T.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Philip, B.

B. Philip, “Laser fusion eaperiment extracts net energy from fuel,” Nature12, 10.1038/nature.2014.14710 (2014).

Qi, X.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Qiu, L. R.

Sater, J. D.

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

Schneiser, M. B.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Schoff, M. E.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Seka, W.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Sha, D. G.

Shah, R. C.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Shen, H.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Shigemori, K.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Silverstein, K.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Steinman, D. A.

R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
[Crossref]

Stephens, R. B.

R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
[Crossref]

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
[Crossref]

Stoeckl, C.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Sun, R. D.

Suter, L. J.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Tan, J. B.

Tang, Y.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Town, R. P. J.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Van Wonterghem, B.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Verbridge, S.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Wang, K.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Wang, L.

Wang, Q.

S. Li, Y. Wang, Q. Wang, X. Ma, L. Wang, W. Zhao, and X. Zhang, “Repid measurement and compensation method of eccentricity in autumatic profile measurement of the ICF capsule,” Appl. Opt. 57(14), 3761–3769 (2018).
[Crossref]

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

Wegner, P.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Whitman, P.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Widmann, K.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Wittman, M. D.

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

Wysocki, F. J.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Yaakobi, B.

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Yamada, H.

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Young, B. K. F.

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Zhang, X.

Zhao, W.

Zhao, W. Q.

Zheng, Y.

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Appl. Opt. (1)

Diamond Relat. Mater. (1)

H. Kato, H. Yamada, S. Ohmagari, A. Chayahara, Y. Mokuno, Y. Fukuyama, N. Fujiwara, K. Miyanishi, Y. Hironaka, and K. Shigemori, “Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion,” Diamond Relat. Mater. 86, 15–19 (2018).
[Crossref]

Fusion Eng. Des. (2)

Y. Q. Li, C. Habchi, X. Liu, Y. Y. Liu, Y. Zheng, X. Y. Li, and H. Shen, “Sanning transmission ion microscopy computed tomography (STIM-CT) for inertial confinement fusion (ICF) targets,” Fusion Eng. Des. 88(4), 188–194 (2013).
[Crossref]

Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).
[Crossref]

Fusion Technol. (4)

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing shell Wall Fluctuations,” Fusion Technol. 38(1), 132–135 (2000).
[Crossref]

J. A. Koch, T. P. Bernat, G. W. Collins, B. A. Hammel, B. J. Kozioziemski, A. J. Mackinnon, J. D. Sater, D. N. Bittner, and Y. Lee, “Quantitative analysis of backlit shadoegraphy as a diahnostic of hydrogen ice surface quality in ICF capsules,” Fusion Technol. 38(1), 123–131 (2000).
[Crossref]

R. S. Craxton, L. M. Elasky, D. R. Harding, L. S. Iwan, R. L. Keck, L. D. Lund, W. Seka, S. Verbridge, and M. D. Wittman, “Three-dimensional characterization of spherical cryogenic tarfets using Ray-trace analysis of multiple shadowgraphy views,” Fusion Technol. 51(4), 717–726 (2007).
[Crossref]

R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Technol. 49(4), 646–649 (2006).
[Crossref]

J. Appl. Phys. (1)

B. J. Kozioziemski, J. A. Koch, A. Barty, and H. E. Martz, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97(6), 063103 (2005).
[Crossref]

J. Appl. Polym. Sci. (1)

C. Lattaud, L. Guilot, C. Brachais, E. Fleury, O. Legaie, and J. Couvercelle, “Influence of a density mismatch on TMPTMA shells Nonconcentricity,” J. Appl. Polym. Sci. 124(6), 4882–4888 (2012).
[Crossref]

Nat. Phys. (1)

R. Betti and O. A. Hurricane, “Inertial-confinement fusion with lasers,” Nat. Phys. 12(5), 435–448 (2016).
[Crossref]

Opt. Commun. (1)

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

R. C. Shah, B. M. Haines, F. J. Wysocki, J. F. Benage, J. A. Fooks, V. Glebov, P. Hakel, M. Hoppe, I. V. Igumenshchev, G. Kagan, R. C. Mancini, F. J. Marshall, D. T. Michel, T. J. Murphy, M. E. Schoff, K. Silverstein, C. Stoeckl, and B. Yaakobi, “Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions,” Phys. Rev. Lett. 118(13), 135001 (2017).
[Crossref]

Science (1)

S. H. Glenzer, B. J. MacGrowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyraka, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. Lepape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneiser, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at Ultra-High laser energies,” Science 327(5970), 1228–1231 (2010).
[Crossref]

Other (2)

B. Philip, “Laser fusion eaperiment extracts net energy from fuel,” Nature12, 10.1038/nature.2014.14710 (2014).

Project Staff, “Inertial Confinement Fusion Target Component Fabrication and Technology Development Support, Annual Report to the U.S. Department of Energy,” General Atomics Report GA-A23240 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1. Parameters of the capsule.
Fig. 2.
Fig. 2. Light path of the high-precision laser differential confocal measurement for the multi-geometric parameters of the capsule.
Fig. 3.
Fig. 3. Measurement principle of the outer and inner diameters of the capsule.
Fig. 4.
Fig. 4. Measurement principle of the 2D (a) outer profile and (b) inner profile of the capsule.
Fig. 5.
Fig. 5. Measurement principle of the 3D inner and outer profiles of the capsule.
Fig. 6.
Fig. 6. The analysis for the fixed-focus measurement error of (a) outer surface vertex and (b) inner surface vertex caused by the misalignment between the optical axis of the sensor and actuator scanning axis.
Fig. 7.
Fig. 7. Effects of the offset inconsistency of the two pinholes on (a) the response curves and (b) the axial resolution.
Fig. 8.
Fig. 8. Simulated results of different shell refractive index n of the capsule with (a) R = 400 µm and (b) R = 800 µm.
Fig. 9.
Fig. 9. Radius measurement error caused by (a) the angle ω and (b) the offset h.
Fig. 10.
Fig. 10. Simulated results of the radius measurement error caused by (a) the angle ω and (b) the offset h.
Fig. 11.
Fig. 11. Effects of the misalignment between the actual measuring optical axis and the ideal measuring optical axis on the rotational fixed-focus measurement of (a) the outer surface and (b) the inner surface.
Fig. 12.
Fig. 12. Fixed-focus error simulation results of (a) the outer surface and (b) the inner surface.
Fig. 13.
Fig. 13. Schematic diagram of capsule multi-geometric parameters measurement system.
Fig. 14.
Fig. 14. High-precision and high-integration differential confocal measurement system for multi-geometric parameters of the ICF capsule.
Fig. 15.
Fig. 15. The differential confocal fixed-focus curves of the capsule.
Fig. 16.
Fig. 16. Repeated measurement results of (a) the outer radius and (b) the inner radius.
Fig. 17.
Fig. 17. Outer and inner circular traces of the equatorial section of the capsule.
Fig. 18.
Fig. 18. Shell thickness of the equatorial section of the capsule.
Fig. 19.
Fig. 19. Repeated measurement results of (a) the center fitting results of the outer and inner surfaces and (b) the scatter plots of the shell non-concentricity.
Fig. 20.
Fig. 20. 3D measurement results of (a) the outer surface, (b) the inner surface, (c) the vertical 3D section profile and (d) the horizontal 3D section profile.

Tables (1)

Tables Icon

Table 1. Results of 10 repeated measurement of the section of the capsule.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I D ( u , u M ) = I 1 ( u , + u M ) I 2 ( u , u M ) = | 1 π 0 2 π 0 1 p 1 ( ρ ) p 2 ( ρ ) e j ρ 2 ( 2 u + u M ) / 2 ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 p 1 ( ρ ) p 2 ( ρ ) e j ρ 2 ( 2 π k 2 ) / 2 ρ d ρ d θ | 2
D = 2 × ( Z A Z C )
t = Z A Z B
T = 0 arcsin ( N A ) T ( n , R , t , β ) d β arcsin ( N A )
T ( n , R , t , β ) = R + n 0 n × sin β × ( t R ) sin ( β + arcsin ( t R R × sin β ) arcsin ( n 0 n × t R R × sin β ) )
d = D 2 T
{ x O = 2 n n i = 1 n n ( Δ R i cos θ i ) y O = 2 n n i = 1 n n ( Δ R i sin θ i )
ε O = max ( ( Δ R i cos θ i x o ) 2 ( Δ R i sin θ i y o ) 2 ) min ( ( Δ R i cos θ i x o ) 2 ( Δ R i sin θ i y o ) 2 )
z b i = z a i T i ( i = 1 , 2 , 3 )
n c = ( x O x I , y O y I )
t u = T i max T i min
φ 0 = π m
{ x i = ρ i cos ( α i ) cos ( β i ) y i = ρ i cos ( α i ) sin( β i ) z i = ρ i sin ( α i )
( x x c ) 2 + ( y y c ) 2 + ( z z c ) 2 = R b 2
ε O = max [ ( x i x O ) 2 + ( y i y O ) 2 + ( z i z O ) 2 ] min [ ( x i x O ) 2 + ( y i y O ) 2 + ( z i z O ) 2 ]
n c = ( x O x I , y O y I , z O z I )
{ Δ L A = L A L A = L A ( 1 cos α ) Δ L B = L B L B = L B ( 1 cos γ )
δ A = δ B = δ C = ( u M u M δ ) / 4
{ δ R ω = R R = R cos ω R δ r ω = r r = R cos ω R cos ω + r 2 R 2 sin 2 ω r
{ δ R h = R 2 h 2 R δ r h = r 2 h 2 r
{ Δ A = R 2 ( e sin θ h ) 2 R 2 ( e sin θ ) 2 Δ B = r 2 ( e sin θ h + n c sin φ ) 2 r 2 ( e sin θ + n c sin φ ) 2
{ Δ u = λ 2 π N A 2 S N R | I D ( u , u M ) u | u = 0 r ρ = 0.436 λ N A
n n π r / r ρ

Metrics