Abstract

We demonstrated the fabrication of bandwidth tunable ultra-broadband mode converters based on CO2-laser inscribed long-period fiber gratings (LPFGs) and helical long-period gratings (HLPGs) in a two-mode fiber (TMF). The simulation and experimental results show that there is a dual-resonance coupling from LP01 to LP11 core mode at the dispersion turning point. The mode converters based on the TMF-LPFG and TMF-HLPG provide a 10-dB bandwidth of ∼300 nm and ∼297 nm, respectively, which covers O + E+S + C band. The 1st order orbital angular momentum (OAM) mode based on TMF-LPFG was generated by adjusting the polarization controllers (PCs), while the 1st order OAM mode can be generated directly by the TMF-HLPG. When the twist rate is varied from -36 rad/m ∼ 36 rad/m, the tunable range of the 10-dB bandwidth is ∼52 nm and ∼91 nm for the LPFG and HLPG mode converters, respectively. The ultra-broadband mode converter can be adopted as a bandwidth tunable mode converter, which can be applied in ultra-broadband mode-division-multiplexing transmission systems and optical fiber sensing systems based on few-mode fibers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mode converter based on the long-period fiber gratings written in the two-mode fiber

Yunhe Zhao, Yunqi Liu, Liang Zhang, Chenyi Zhang, Jianxiang Wen, and Tingyun Wang
Opt. Express 24(6) 6186-6195 (2016)

Ultra-broadband conversion of OAM mode near the dispersion turning point in helical fiber gratings

Kaili Ren, Minhui Cheng, Liyong Ren, Yunhui Jiang, Dongdong Han, Yongkai Wang, Jun Dong, Jihong Liu, Li Yang, and Zhanqiang Xi
OSA Continuum 3(1) 77-87 (2020)

Ultra-broadband mode converters based on length-apodized long-period waveguide gratings

Wen Wang, Jieyun Wu, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Opt. Express 25(13) 14341-14350 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Vuong, P. Ramantanis, Y. Frignac, M. Salsi, P. Genevaux, D. F. Bendimerad, and G. Charlet, “Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber,” Opt. Express 23(2), 1438–1455 (2015).
    [Crossref]
  2. L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing,” Opt. Express 25(10), 11736–11748 (2017).
    [Crossref]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  4. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).
  5. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref]
  6. L. Wang, P. Vaity, B. Ung, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Characterization of OAM fibers using fiber Bragg gratings,” Opt. Express 22(13), 15653–15661 (2014).
    [Crossref]
  7. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref]
  8. Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
    [Crossref]
  9. Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
    [Crossref]
  10. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion,” Opt. Lett. 41(21), 5082–5085 (2016).
    [Crossref]
  11. K. Wei, W. Zhang, L. Huang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25(3), 2733–2741 (2017).
    [Crossref]
  12. S. M. Israelsen and K. Rottwitt, “Broadband higher-order mode conversion using chirped microbend long period gratings,” Opt. Express 24(21), 23969–23976 (2016).
    [Crossref]
  13. W. Wang, J. Wu, K. Chen, W. Jin, and K. S. Chiang, “Ultra-broadband mode converters based on length-apodized long-period waveguide gratings,” Opt. Express 25(13), 14341–14350 (2017).
    [Crossref]
  14. Y. Zhao, Z. Liu, Y. Liu, C. Mou, T. Wang, and Y. Yang, “Ultra-broadband fiber mode converter based on apodized phase-shifted long-period gratings,” Opt. Lett. 44(24), 5905–5908 (2019).
    [Crossref]
  15. Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
    [Crossref]
  16. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
    [Crossref]
  17. L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
    [Crossref]
  18. X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
    [Crossref]
  19. H. Zhao, P. Wang, T. Yamakawa, and H. Li, “All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating,” Opt. Lett. 44(21), 5370–5373 (2019).
    [Crossref]
  20. Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, and Y. Wang, “Polarization-independent orbital angular momentum generator based on a chiral fiber grating,” Opt. Lett. 44(1), 61–64 (2019).
    [Crossref]
  21. K. Ren, M. Cheng, L. Ren, Y. Jiang, D. Han, Y. Wang, J. Dong, J. Liu, L. Yang, and Z. Xi, “Ultra-broadband conversion of OAM mode near the dispersion turning point in helical fiber gratings,” OSA Continuum 3(1), 77–87 (2020).
    [Crossref]
  22. Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2006).
    [Crossref]
  23. W. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17(21), 19134–19152 (2009).
    [Crossref]
  24. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
    [Crossref]
  25. C. Jiang, Y. Liu, Y. Zhao, C. Mou, and T. Wang, “Helical long-period gratings inscribed in polarization maintaining fibers by CO2 Laser,” J. Lightwave Technol. 37(3), 889–896 (2019).
    [Crossref]
  26. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2020 (1)

2019 (5)

2018 (1)

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

2017 (5)

2016 (4)

2015 (1)

2014 (2)

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).

2009 (1)

2006 (1)

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2006).
[Crossref]

2002 (2)

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Argyros, A.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).

Bai, Z.

Bendimerad, D. F.

Bennion, I.

Bland-Hawthorn, J.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Brambilla, G.

Cao, X.

Charlet, G.

Chen, K.

Cheng, M.

Chiang, K. S.

Corsi, A.

Dong, J.

Frignac, Y.

Fu, C.

Gao, F.

Genevaux, P.

Guo, Y.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Han, D.

He, J.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Huang, L.

Huang, W.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

W. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17(21), 19134–19152 (2009).
[Crossref]

Ismaeel, R.

Israelsen, S. M.

Jiang, B.

Jiang, C.

Jiang, Y.

Jin, W.

Jung, Y.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

LaRochelle, S.

Lee, T.

Leon-Saval, S. G.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).

Li, H.

Li, P.

Li, Z.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Liao, C.

Lin, J.

Liu, J.

Liu, Q.

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2006).
[Crossref]

Liu, S.

Liu, Y.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Y. Zhao, Z. Liu, Y. Liu, C. Mou, T. Wang, and Y. Yang, “Ultra-broadband fiber mode converter based on apodized phase-shifted long-period gratings,” Opt. Lett. 44(24), 5905–5908 (2019).
[Crossref]

C. Jiang, Y. Liu, Y. Zhao, C. Mou, and T. Wang, “Helical long-period gratings inscribed in polarization maintaining fibers by CO2 Laser,” J. Lightwave Technol. 37(3), 889–896 (2019).
[Crossref]

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref]

X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
[Crossref]

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref]

Liu, Z.

Lor, K. P.

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2006).
[Crossref]

Mao, B.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Mao, D.

Mei, T.

Messaddeq, Y.

Mou, C.

Mu, J.

Nejad, R. M.

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Oduro, B.

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
[Crossref]

Ramantanis, P.

Ren, K.

Ren, L.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Rottwitt, K.

Rusch, L.

Rusch, L. A.

Salsi, M.

Shu, X.

Tang, J.

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ung, B.

Vaity, P.

Vuong, J.

Wang, L.

Wang, P.

Wang, T.

Y. Zhao, Z. Liu, Y. Liu, C. Mou, T. Wang, and Y. Yang, “Ultra-broadband fiber mode converter based on apodized phase-shifted long-period gratings,” Opt. Lett. 44(24), 5905–5908 (2019).
[Crossref]

C. Jiang, Y. Liu, Y. Zhao, C. Mou, and T. Wang, “Helical long-period gratings inscribed in polarization maintaining fibers by CO2 Laser,” J. Lightwave Technol. 37(3), 889–896 (2019).
[Crossref]

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
[Crossref]

X. Cao, Y. Liu, L. Zhang, Y. Zhao, and T. Wang, “Characteristics of chiral long-period fiber gratings written in the twisted two-mode fiber by CO2 laser,” Appl. Opt. 56(18), 5167–5171 (2017).
[Crossref]

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref]

Wang, W.

Wang, Y.

Wang, Z.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
[Crossref]

Wei, K.

Wen, J.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Wu, J.

Xi, Z.

Yamakawa, T.

Yan, M.

Yan, Z.

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

Yang, L.

Yang, Y.

Yu, J.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Zhang, C.

Zhang, G.

Zhang, H.

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Zhang, L.

Zhang, W.

Zhang, Y.

Zhao, H.

Zhao, J.

Zhao, Y.

Zheng, G.

Appl. Opt. (1)

Appl. Phys. B (1)

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Zhang, Y. Liu, Y. Zhao, and T. Wang, “High sensitivity twist sensor based on helical long-period grating written in two-mode fiber,” IEEE Photonics Technol. Lett. 28(15), 1629–1632 (2016).
[Crossref]

Y. Zhao, T. Wang, C. Mou, Z. Yan, Y. Liu, and T. Wang, “All-fiber vortex laser generated with few-mode long-period gratings,” IEEE Photonics Technol. Lett. 30(8), 752–755 (2018).
[Crossref]

J. Lightwave Technol. (3)

Nanophotonics (1)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2(5), 429–440 (2013).

Opt. Express (9)

W. Wang, J. Wu, K. Chen, W. Jin, and K. S. Chiang, “Ultra-broadband mode converters based on length-apodized long-period waveguide gratings,” Opt. Express 25(13), 14341–14350 (2017).
[Crossref]

W. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17(21), 19134–19152 (2009).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref]

L. Wang, P. Vaity, B. Ung, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Characterization of OAM fibers using fiber Bragg gratings,” Opt. Express 22(13), 15653–15661 (2014).
[Crossref]

J. Vuong, P. Ramantanis, Y. Frignac, M. Salsi, P. Genevaux, D. F. Bendimerad, and G. Charlet, “Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber,” Opt. Express 23(2), 1438–1455 (2015).
[Crossref]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref]

S. M. Israelsen and K. Rottwitt, “Broadband higher-order mode conversion using chirped microbend long period gratings,” Opt. Express 24(21), 23969–23976 (2016).
[Crossref]

K. Wei, W. Zhang, L. Huang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions,” Opt. Express 25(3), 2733–2741 (2017).
[Crossref]

L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing,” Opt. Express 25(10), 11736–11748 (2017).
[Crossref]

Opt. Laser Technol. (1)

Y. Guo, Y. Liu, Z. Wang, H. Zhang, B. Mao, W. Huang, and Z. Li, “More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long-period fiber gratings,” Opt. Laser Technol. 118, 8–12 (2019).
[Crossref]

Opt. Lett. (6)

OSA Continuum (1)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) The transverse RI profile of TMF measured by S14; (b) Calculated RIs of modes and dependence of the calculated grating pitches for mode conversion on resonance wavelength.
Fig. 2.
Fig. 2. (a) The simulated transmission spectra of the TMF-LPFGs with different grating pitches; (b) The simulated transmission spectrum and mode distribution of the TMF-LPFGs with a period of 614 µm.
Fig. 3.
Fig. 3. (a) The experimental transmission spectra of the TMF-LPFGs with different grating periods; (b) The simulation and experimental results of the resonance wavelength of two dips; (c) The transmission spectra of TMF-LPFGs with a period of 614 µm and period number of 15, 20 and 40, respectively.
Fig. 4.
Fig. 4. (a) Experimental setup to observe the mode distribution; (b) Output mode distribution and interference patterns captured at different wavelengths for the ultra-broadband mode converter.
Fig. 5.
Fig. 5. (a) The twist characteristics of the TMF-LPFG with the twist rate variation; (b) The dependence of 10-dB bandwidth of the mode converter on the twist rate; (c) The temperature characteristics of the TMF-LPFG with the temperature variation; (d) The dependence of 10-dB bandwidth of the mode converter on the temperature; (e) The strain characteristics of the TMF-LPFG with the strain variation; (f) The bending characteristics of the TMF-LPFG with curvature variation.
Fig. 6.
Fig. 6. The schematic diagram of the experimental set-up for TMF-HLPG fabrication.
Fig. 7.
Fig. 7. (a) The experimental transmission spectra of the TMF-HLPGs with different grating periods; (b) The transmission spectrum of the TMF-HLPG with a period of 611 µm.
Fig. 8.
Fig. 8. Output near-field mode distribution and OAM beams captured at different wavelengths for the ultra-broadband mode converter.
Fig. 9.
Fig. 9. (a) The twist characteristics of the TMF-HLPG with the twist rate variation; (b) The dependence of 10-dB bandwidth of the mode converter on twist rate; (c) The temperature characteristics of the TMF-HLPG with the temperature variation; (d) The dependence of 10-dB bandwidth of the mode converter on the temperature; (e) The strain characteristics of the TMF-HLPG with the strain variation; (f) The bending characteristics of the TMF-HLPG with curvature variation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ  =  λ res / λ res ( n e f f , 01 n e f f , m n ) ( n e f f , 01 n e f f , m n )
T = π α 180 0 L
Λ  =  2 π v / 2 π v s s

Metrics