Abstract
We demonstrate the existence of accelerating parabolic beams that constitute, together with the Airy beams, the only orthogonal and complete families of solutions of the two-dimensional paraxial wave equation that exhibit the unusual ability to remain diffraction-free and freely accelerate during propagation. Since the accelerating parabolic beams, like the Airy beams, carry infinite energy, we present exact finite-energy accelerating parabolic beams that still retain their unusual features over several diffraction lengths.
© 2008 Optical Society of America
Full Article |
PDF Article
OSA Recommended Articles
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (14)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription