Abstract

An electric-field-assisted method to produce diffractive optical devices is demonstrated. A uniform film of liquid UV curable resin was produced as a drying ring from an organic solvent. Dielectrophoresis forces maintained the stability of the thin film and also imprinted a periodic corrugation deformation of pitch 20μm on the film surface. Continuous in situ voltage-controlled adjustment of the optical diffraction pattern was carried out simultaneously with UV curing. A fully cured solid phase grating was produced with the particular voltage-selected tailored optical property that the zero transmitted order was suppressed for laser light at 633nm.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(14) 17590-17599 (2014)

High-order diffraction suppression using modulated groove position gratings

Nan Gao and Changqing Xie
Opt. Lett. 36(21) 4251-4253 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription