Abstract

In this Letter, we construct a metamaterial with dual-mode electromagnetically induced transparency (EIT)-like behavior by introducing “bright atoms,” “quasi-dark atoms,” and “dark atoms” simultaneously. The dual-mode EIT-like behavior has been demonstrated both experimentally and theoretically in terahertz (THz) regime. At two EIT-like modes, slow light is also observed as two time-delayed wave packets, and the effective group refractive index can reach 102. Furthermore, stable dual-mode EIT-like behavior is verified in this metamaterial for a wide range of oblique incident angles. Our work provides a design approach to mimic dual-mode EIT, and such an approach may achieve potential applications on miniaturized and versatile THz devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A novel planar metamaterial design for electromagnetically induced transparency and slow light

Junqiao Wang, Baohe Yuan, Chunzhen Fan, Jinna He, Pei Ding, Qianzhong Xue, and Erjun Liang
Opt. Express 21(21) 25159-25166 (2013)

Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application

Qiao Wang, Li Yu, Huixuan Gao, Shuwen Chu, and Wei Peng
Opt. Express 27(24) 35012-35026 (2019)

Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription