Abstract

The potential of Ge nanoparticles (NPs) embedded in Al2O3 with tunable effective optical bandgap values in the range of 1.0–3.3 eV to induce enhanced Er3+ light emission is investigated. We demonstrate nonresonant indirect excitation of the Er3+ ions mediated by the Ge NPs at room temperature. Efficient Er3+ light emission enhancement is obtained for Ge NPs with large effective optical bandgaps in the range of 1.85 to 2.8 eV. The coupled Ge NP–Er emission shows a negligible thermal quenching from 10 K to room temperature that is related to Er3+ de-excitation through thermally activated defect states.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of light emission from nanostructured In2O3 via surface plasmons

Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu
Opt. Express 18(22) 23385-23393 (2010)

Enhanced upconversion emission in colloidal (NaYF4:Er3+)/NaYF4  core/shell nanoparticles excited at 1523 nm

Wei Shao, Guanying Chen, Jossana Damasco, Xianliang Wang, Aliaksandr Kachynski, Tymish Y. Ohulchanskyy, Chunhui Yang, Hans Ågren, and Paras N. Prasad
Opt. Lett. 39(6) 1386-1389 (2014)

Carrier-mediated 1.55 μm photoluminescence from single Er3+ center in SnO2 nanocrystals

Jintao Kong, Haomiao Zhu, Renfu Li, Wenqin Luo, and Xueyuan Chen
Opt. Lett. 34(12) 1873-1875 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription