Abstract

A mode-locked extended cavity quantum well ring laser at 1.58 μm with a repetition rate of 2.5 GHz in the form of a photonic integrated circuit is presented. The device is realized using InP-based active-passive integration technology. The 33 mm long cavity contains gain, saturable absorption, and passive waveguide sections as well as phase shifter sections to enable fine tuning of the spectral position of the lasing modes. Passive and hybrid mode-locked operation, along with the wavelength tuning of the laser modes, are experimentally demonstrated. In the passive mode-locking regime, a beat signal at the fundamental round trip frequency with a 3 dB bandwidth of 6.1 kHz is produced on a fast photo diode.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1  GHz InP on-chip monolithic extended cavity colliding-pulse mode-locked laser

R. Guzmán, C. Gordon, L. Orbe, and G. Carpintero
Opt. Lett. 42(12) 2318-2321 (2017)

Photonic integrated circuit extended cavity passively mode-locked dual absorber symmetric ring laser

Mu-Chieh Lo, Dominik Auth, Christoph Weber, Patrick Fiala, Pascal Sauer, Guillermo Carpintero, and Stefan Breuer
Opt. Lett. 44(14) 3566-3569 (2019)

Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser

Valentina Moskalenko, Sylwester Latkowski, Saeed Tahvili, Tjibbe de Vries, Meint Smit, and Erwin Bente
Opt. Express 22(23) 28865-28874 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  2. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
    [Crossref]
  3. V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.
  4. S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
    [Crossref]
  5. M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.
  6. M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, Opt. Lett. 36, 2462 (2011).
    [Crossref]
  7. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
    [Crossref]
  8. SMART Photonics B.V., http://www.smartphotonics.nl/ .
  9. J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
    [Crossref]
  10. J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.
  11. S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).
  12. S. Arahira and Y. Ogawa, IEEE J. Quantum Electron. 33, 255 (1997).

2014 (1)

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

2012 (1)

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

2011 (2)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, Opt. Lett. 36, 2462 (2011).
[Crossref]

2010 (1)

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

2000 (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
[Crossref]

1997 (1)

S. Arahira and Y. Ogawa, IEEE J. Quantum Electron. 33, 255 (1997).

Ambrosius, H.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Ambrosius, H. P. M. M.

Arahira, S.

S. Arahira and Y. Ogawa, IEEE J. Quantum Electron. 33, 255 (1997).

Arrighi, A.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

Augustin, L. M.

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Avrutin, E. A.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
[Crossref]

Baek, J.-H.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Baney, D. M.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Barbarin, Y.

Ben Yoo, S. J.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Bente, E.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Bente, E. A. J. M.

Bhardwaj, A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Binetti, P.

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Binetti, P. R. A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

Blumenthal, D. J.

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

Bolk, J.

Bowers, J. E.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

Cheung, S.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Coldren, L.

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Coldren, L. A.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

Davenport, M. L.

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

de Vries, T.

M. S. Tahvili, Y. Barbarin, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. M. M. Ambrosius, M. K. Smit, and E. A. J. M. Bente, Opt. Lett. 36, 2462 (2011).
[Crossref]

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Fish, G.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

Fontaine, N. K.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Grote, N.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Guzzon, R.

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Heck, M. J.

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

Heck, M. J. R.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

Hung, Y.-J.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Hutchinson, J.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

Latkowski, S.

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Leijtens, X.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Leijtens, X. J. M.

Marsh, J. H.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
[Crossref]

Moskalenko, V.

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Norberg, E.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Ogawa, Y.

S. Arahira and Y. Ogawa, IEEE J. Quantum Electron. 33, 255 (1997).

Park, H.

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

Parker, J.

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

Parker, J. S.

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
[Crossref]

Robbins, D.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Schell, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Scott, R. P.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Smalbrugge, E.

Smit, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

Smit, M. K.

Soares, F. M.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

Srinivasan, S.

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Tahvili, M. S.

Van der Tol, J.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Wale, M.

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Zhou, X.

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

IEE Proc. Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, IEE Proc. Optoelectron. 147, 251 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Arahira and Y. Ogawa, IEEE J. Quantum Electron. 33, 255 (1997).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Srinivasan, A. Arrighi, M. J. R. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, IEEE J. Sel. Top. Quantum Electron. 20, 8 (2014).

IEEE Photon. Technol. Lett. (2)

J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y.-J. Hung, and L. A. Coldren, IEEE Photon. Technol. Lett. 24, 131 (2012).
[Crossref]

S. Cheung, J.-H. Baek, R. P. Scott, N. K. Fontaine, F. M. Soares, X. Zhou, D. M. Baney, and S. J. Ben Yoo, IEEE Photon. Technol. Lett. 22, 1793 (2010).
[Crossref]

IET Optoelectron. (1)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, IET Optoelectron. 5, 187 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Other (4)

V. Moskalenko, S. Latkowski, T. de Vries, L. M. Augustin, X. Leijtens, M. Smit, and E. Bente, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. Tu2H.3.

M. J. Heck, M. L. Davenport, H. Park, D. J. Blumenthal, and J. E. Bowers, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), p. OMI5.

J. Parker, P. Binetti, A. Bhardwaj, R. Guzzon, E. Norberg, Y.-J. Hung, and L. Coldren, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), p. CTuV6.

SMART Photonics B.V., http://www.smartphotonics.nl/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the photonic integrated circuit based ring mode-locked laser: semiconductor optical amplifier (SOA); saturable absorber (SA); electrical isolation (ISO); electro refractive modulator (ERM) and multi-mode interference coupler ( 2 × 2 MMI ) sections and passive waveguides (PWG) in blue. (b) A microscope image of the fabricated device with an area of 4 mm 2 ( 2.3 mm × 1.75 mm ).
Fig. 2.
Fig. 2. (a) Experimental setup for the characterization of the mode-locked laser: optical isolator (ISOL), in-line variable optical attenuator and power monitor (VOA), 50 GHz photo diode (PD); electrical spectrum analyzer (ESA); high resolution optical spectrum analyzer (OSA); C+L band erbium doped fiber amplifier (EDFA); polarization controller (PC); second harmonic generation based intensity autocorrelator (SHG-AC); ultra-low noise signal generator (SIG). (b) Optical power coupled into a lensed fiber and voltage drop across the SOA section against the injected current.
Fig. 3.
Fig. 3. Output characteristics of the laser operating in a passive mode-locking regime with the I SOA = 73 mA , V SA = 6.3 V . (a) Optical spectrum recorded with high resolution (100 MHz) optical spectrum analyzer. (b) RF beat signal produced on a fast photodiode and recorded with an electrical spectrum analyzer with a resolution bandwidth (RBW) of 330 kHz, video bandwidth (VBW) of 3.30 kHz, and sweep time (ST) of 36 s. (c) An SHG autocorrelation trace with a duration of 15 ps. (d) A detailed view of the fundamental frequency beat signal in blue (RBW, 1 kHz; VBW, 1 kHz; ST, 17 s) and a weighted Lorentzian fit in red.
Fig. 4.
Fig. 4. Signals recorded from the laser operation in hybrid mode-locking regime with the biasing conditions: I SOA = 73 mA , V SA = 6.3 V and an RF signal at 2.526 GHz and 5 dBm . (a) Selected optical spectrum recorded with a high resolution (100 MHz) optical spectrum analyzer. (b) RF beat signal produced on a fast photodiode and recorded with electrical spectrum analyzer (RBW, 330 kHz; VBW, 3.30 kHz; ST, 36 s). (c) The fundamental beat signals for passive and hybrid mode-locking operation in blue and red, respectively (RBW, 1 kHz; VBW, 1 kHz; ST, 17 s). (d) A detailed view of the fundamental frequency beat signal (RBW, 1 Hz; VBW, 1 Hz; ST, 4.3 s).
Fig. 5.
Fig. 5. Optical spectra recorded with a resolution of 100 MHz for passive and hybrid mode-locking (PML and HML, respectively) operation of the laser for selected phase shifter voltages for bias conditions set: I SOA = 73 mA , V SA = 6.3 V , and RF power set at 5 dBm for hybrid mode-locking case: (a) PML with V ERM = 0 V ; (b) PML with V ERM = 10 V ; (c) HML with V ERM = 0 V ; and (d) PML with V ERM = 10 V .
Fig. 6.
Fig. 6. (a) Optical spectra in function of the phase shifter reverse bias V ERM , recorded with 20 MHz resolution in passive mode-locking ML. (b) Average output power coupled into the fiber with respect to the applied V ERM in passive mode-locking. (c) The cavity mode frequency shift Δ f mode with respect to applied V ERM for passive (blue) and hybrid (red) mode-locking regimes. (d) Beat frequency change as a function of applied V ERM for passive (blue) and hybrid (red) mode-locking regimes. For data in all sub figures, biasing conditions were set at: I SOA = 73 mA , V SA = 6.3 V , and RF power set at 5 dBm ( 0.3 V p - p ) for hybrid mode-locking case.

Metrics