Abstract

Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type—limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photophoretic trapping of airborne particles using ultraviolet illumination

Brandon Redding, Steven C. Hill, Dimitri Alexson, Chuji Wang, and Yong-Le Pan
Opt. Express 23(3) 3630-3639 (2015)

Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Observation of trapping and transporting air-borne absorbing particles with a single optical beam

Ze Zhang, Drake Cannan, Jingjiao Liu, Peng Zhang, Demetrios N. Christodoulides, and Zhigang Chen
Opt. Express 20(15) 16212-16217 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
    [Crossref]
  3. A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
    [Crossref]
  4. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [Crossref]
  5. R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
    [Crossref]
  6. J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
    [Crossref]
  7. V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
    [Crossref]
  8. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
    [Crossref]
  9. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 5743 (2009).
    [Crossref]
  10. J. Lin and Y. Li, Appl. Phys. Lett. 104, 101909 (2014).
    [Crossref]
  11. Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
    [Crossref]
  12. C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
    [Crossref]
  13. T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres (Springer, 2013).
  14. G. Roosen and C. Imbert, Phys. Lett. A 59, 6 (1976).
    [Crossref]
  15. M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
    [Crossref]
  16. M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
    [Crossref]
  17. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 8201 (2009).
    [Crossref]
  18. K. T. Gahagan and G. a. Swartzlander, Opt. Lett. 21, 827 (1996).
    [Crossref]
  19. Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
    [Crossref]
  20. F. Liu, Z. Zhang, Y. Wei, Q. Zhang, T. Cheng, and X. Wu, Opt. Express 22, 23716 (2014).
    [Crossref]
  21. V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, Opt. Lett. 37, 1934 (2012).
    [Crossref]
  22. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 1491 (2011).
    [Crossref]
  23. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
    [Crossref]
  24. J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
    [Crossref]
  25. B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
    [Crossref]
  26. D. R. Burnham and D. McGloin, J. Opt. Soc. Am. B 28, 2856 (2011).
    [Crossref]
  27. R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
    [Crossref]
  28. Z. Zhang, D. Cannan, J. Liu, P. Zhang, D. N. Christodoulides, and Z. Chen, Opt. Express 20, 16212 (2012).
    [Crossref]
  29. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
    [Crossref]
  30. T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
    [Crossref]
  31. C. Wang, Y.-L. Pan, and M. Coleman, Opt. Lett. 39, 2767 (2014).
    [Crossref]

2015 (3)

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
[Crossref]

2014 (6)

C. Wang, Y.-L. Pan, and M. Coleman, Opt. Lett. 39, 2767 (2014).
[Crossref]

F. Liu, Z. Zhang, Y. Wei, Q. Zhang, T. Cheng, and X. Wu, Opt. Express 22, 23716 (2014).
[Crossref]

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

J. Lin and Y. Li, Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

2012 (4)

2011 (2)

2010 (2)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

2009 (3)

2007 (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

2006 (1)

M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

1997 (1)

1996 (1)

1987 (1)

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[Crossref]

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

1976 (1)

G. Roosen and C. Imbert, Phys. Lett. A 59, 6 (1976).
[Crossref]

1971 (1)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[Crossref]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Alexson, D.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[Crossref]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[Crossref]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Beresnev, L. A.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Bui, A. A. M.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

Burnham, D. R.

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

D. R. Burnham and D. McGloin, J. Opt. Soc. Am. B 28, 2856 (2011).
[Crossref]

Cannan, D.

Chen, Z.

Cheng, T.

Christodoulides, D. N.

Coleman, M.

C. Wang, Y.-L. Pan, and M. Coleman, Opt. Lett. 39, 2767 (2014).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
[Crossref]

Davoyan, A. R.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

Dear, R. D.

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

Desyatnikov, A. S.

du Preez-Wilkinson, N.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[Crossref]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[Crossref]

Engheta, N.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

Gahagan, K. T.

Guillon, M.

M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
[Crossref]

Hart, A. G.

J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
[Crossref]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Hernandez, D.

Hill, S. C.

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
[Crossref]

Hnatovsky, C.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, Opt. Lett. 37, 1934 (2012).
[Crossref]

Huang, S.

Imbert, C.

G. Roosen and C. Imbert, Phys. Lett. A 59, 6 (1976).
[Crossref]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
[Crossref]

Kivshar, Y. S.

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[Crossref]

Kobayashi, T.

Krolikowski, W.

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Li, T.

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres (Springer, 2013).

Li, Y.

J. Lin and Y. Li, Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Li, Y.-Q.

J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
[Crossref]

Lin, J.

J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
[Crossref]

J. Lin and Y. Li, Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Liu, F.

Liu, J.

Loke, V. L. Y.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

McGloin, D.

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

D. R. Burnham and D. McGloin, J. Opt. Soc. Am. B 28, 2856 (2011).
[Crossref]

Moine, O.

M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Nieminen, T. A.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Omori, R.

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

Pan, Y.-L.

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

C. Wang, Y.-L. Pan, and M. Coleman, Opt. Lett. 39, 2767 (2014).
[Crossref]

Y.-L. Pan, S. C. Hill, and M. Coleman, Opt. Express 20, 5325 (2012).
[Crossref]

Prakash, J.

Redding, B.

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
[Crossref]

Reid, J. P.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[Crossref]

Ritchie, G. A. D.

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

Rode, A. V.

Roosen, G.

G. Roosen and C. Imbert, Phys. Lett. A 59, 6 (1976).
[Crossref]

Rubinsztein-Dunlop, H.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Salazar, M.

Santarpia, J. L.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Shostka, N.

Shvedov, V.

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

Shvedov, V. G.

Stilgoe, A. B.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

Stout, B.

M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
[Crossref]

Summers, M. D.

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

Suzuki, A.

Swartzlander, G. a.

Wang, C.

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y.-L. Pan, Opt. Express 23, 3630 (2015).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

C. Wang, Y.-L. Pan, and M. Coleman, Opt. Lett. 39, 2767 (2014).
[Crossref]

Wei, Y.

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[Crossref]

Wu, X.

Zhang, P.

Zhang, Q.

Zhang, Z.

Appl. Phys. Lett. (5)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[Crossref]

J. Lin and Y. Li, Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

J. Lin, A. G. Hart, and Y.-Q. Li, Appl. Phys. Lett. 106, 171906 (2015).
[Crossref]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[Crossref]

J. Opt. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A 9, S196 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Y. Loke, A. A. M. Bui, and H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer 146, 59 (2014).
[Crossref]

C. Wang, Y.-L. Pan, S. C. Hill, and B. Redding, J. Quant. Spectrosc. Radiat. Transfer 153, 4 (2015).
[Crossref]

Nat. Photonics (1)

V. Shvedov, A. R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, Nat. Photonics 8, 846 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (1)

R. D. Dear, D. R. Burnham, M. D. Summers, D. McGloin, and G. A. D. Ritchie, Phys. Chem. Chem. Phys. 14, 15826 (2012).
[Crossref]

Phys. Lett. A (1)

G. Roosen and C. Imbert, Phys. Lett. A 59, 6 (1976).
[Crossref]

Phys. Rev. Lett. (3)

M. Guillon, O. Moine, and B. Stout, Phys. Rev. Lett. 96, 143902 (2006).
[Crossref]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[Crossref]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).
[Crossref]

Other (1)

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of the optical trapping apparatus. The diameter of an expanded laser beam is controlled with a tunable iris before passing through two axicons to form a collimated hollow beam. The aspheric lens forms a hollow conical focus within a glass chamber where airborne particles are trapped. By adjusting the beam size before the axicon lenses with the iris, the size of the hollow region can be adjusted, as indicated by the light blue regions. (b) Calculated intensity profile near the focal spot plotted on a log-scale. (c) Image of the conical focal region produced inside the chamber obtained by introducing Johnson Smut Grass Spores and recording a long exposure time image. (d) Image of a spore trapped in air near the focal point.
Fig. 2.
Fig. 2. (a) The trapping efficiency, Q z , experienced by a particle along the optical axis using either a full lens of NA = 0.6 or the ring geometry shown in Fig. 1. Optical trapping is possible if Q z becomes negative at some position, providing the required restoring force. Due to the relatively high index of the particle, the standard laser tweezers approach (“full lens”) is not able to trap the particle, whereas the ring geometry provides the required negative restoring force. (b) The minimum of Q z is shown for the ring geometry as a function of the inner and outer NA. The black line corresponds to Q z = 0 , and trapping is possible for combinations of inner and outer NA to the right of the line. (c), (d) The minimum of Q z is shown using a full lens (c) or the ring geometry (d) as a function of the refractive index of the particle and the outer NA. The white contour lines correspond to Q z = 0 , and trapping is possible when the minimum force is negative. Experimentally, we trapped particles with index 1.5 using an outer NA of 0.55 in the ring geometry, corresponding to the position indicated by the black “×.”
Fig. 3.
Fig. 3. Optical trapping is demonstrated for four classes of particles, described by the particle shape (spherical or spatially irregular) and material type (absorbing or nonabsorbing). The images show an example of a trapped particle of each type. The yellow lines indicate the approximate position of the focal cone, extracted from an image similar to the one shown in Fig. 1(c). Particles of each type are trapped along the optical axis near the focal position.

Metrics