Abstract

A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling

Lijia Zhang, Xiangjun Xin, Bo Liu, and Xiaoli Yin
Opt. Express 20(26) B32-B37 (2012)

Joint robustness security in optical OFDM access system with Turbo-coded subcarrier rotation

Lijia Zhang, Bo Liu, Xiangjun Xin, and Yongjun Wang
Opt. Express 23(1) 13-18 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, J. Lightwave Technol. 31, 1367 (2013).
    [Crossref]
  2. P. J. Winzer, J. Lightwave Technol. 30, 3824 (2012).
    [Crossref]
  3. P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.
  4. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, Opt. Lett. 39, 3110 (2014).
    [Crossref]
  5. J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.
  6. N. Jiang, C. Zhang, and K. Qiu, Opt. Lett. 37, 4501 (2012).
    [Crossref]
  7. Z. Gao, B. Dai, X. Wang, N. Kataoka, and N. Wada, Opt. Lett. 36, 1623 (2011).
    [Crossref]
  8. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
    [Crossref]
  9. Z. Wang, J. Chang, and P. R. Prucnal, J. Lightwave Technol. 28, 1761 (2010).
    [Crossref]
  10. L. Zhang, B. Liu, X. Xin, Q. Zhang, J. Yu, and Y. Wang, J. Lightwave Technol. 31, 74 (2013).
    [Crossref]

2014 (1)

2013 (2)

2012 (2)

2011 (2)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

Z. Gao, B. Dai, X. Wang, N. Kataoka, and N. Wada, Opt. Lett. 36, 1623 (2011).
[Crossref]

2010 (1)

Chang, J.

Che, D.

Chen, X.

Cunningham, D. G.

Dai, B.

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

Eriksson, T. A.

P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.

Estarán, J.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

Gao, Z.

Hu, Q.

Jiang, N.

Johannisson, P.

P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.

Karlsson, M.

P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.

Kataoka, N.

Li, A.

Liu, B.

Olmedo, M. I.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Penty, R. V.

Piels, M.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Porto, E.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

Z. Wang, J. Chang, and P. R. Prucnal, J. Lightwave Technol. 28, 1761 (2010).
[Crossref]

Qiu, K.

Shieh, W.

Sjödin, M.

P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.

Tafur Monroy, I.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Usuga, M. A.

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

Wada, N.

Wang, X.

Wang, Y.

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

Z. Wang, J. Chang, and P. R. Prucnal, J. Lightwave Technol. 28, 1761 (2010).
[Crossref]

Wei, J. L.

White, I. H.

Winzer, P. J.

Xin, X.

Yu, J.

Zhang, C.

Zhang, L.

Zhang, Q.

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, IEEE Trans. Inf. Forensics Security 6, 725 (2011).
[Crossref]

J. Lightwave Technol. (4)

Opt. Lett. (3)

Other (2)

J. Estarán, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. Tafur Monroy, in Proceeding of 2014 European Conference on Optical Communication (IEEE, 2014), paper PD.4.3.

P. Johannisson, M. Sjödin, T. A. Eriksson, and M. Karlsson, in Proceeding of 2014 Optical Fiber Communication (IEEE, 2014), paper M2C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Principle of 4D Stokes vector scrambling (a) intra-subcarrier; (b) among different subcarriers.
Fig. 2.
Fig. 2. Experimental setup for the secure multi-carrier system based on 4D Stokes vector scrambling (AWG, arbitrary waveform generator; SMF, single-mode fiber; LO, local oscillator; DSO, digital signal oscillator).
Fig. 3.
Fig. 3. Phase diagrams of (a) original chaos; (b) after one update; the generated chaotic sequences (c) with slightly different keys (red line: x 0 up = 0.565197469869506 ; blue line: x 0 up = 0.565197469869507 ); (d) before and after one update.
Fig. 4.
Fig. 4. Measured BER curves for Pol-QAM 6-4 and PDM-QPSK after 80 km transmission.
Fig. 5.
Fig. 5. Measured BER curves with and without correct key (b2b, back to back; w/, with; w/o, without; OSNR resolution bandwidth: 0.1 nm).
Fig. 6.
Fig. 6. Measured BER curves with (a) parts of the correct key at the illegal receiver; (b) different subcarrier lengths at the illegal receiver.
Fig. 7.
Fig. 7. Measured BER curves for different encryptions at the illegal receiver.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ x n + 1 up = μ x n up ( 1 x n up ) + ( ζ x n up ) mod ( 0.016 μ ) x n + 1 down = λ * x n down * ( 1 x n down * ) .
{ λ * = 0.4 [ x n up ε 1 μ 2 ( 4 μ ) ] 0.25 μ ε 1 μ 2 ( 4 μ ) + ε 2 x n down * = Mod 0.25 λ ( 2 3 | x n 1 down * 0.9 x n up | ) .
S k , n = [ s j , 1 n , s j , 2 n ] , j = 1 to 12 .
Ψ 1 = sort { ψ a } = sort { [ ψ 1 , j , ψ 2 , j ] T } , j = 1 to 12 ,
S k , n = [ s Ψ 1,1 j , Ψ 1,3 j n , s Ψ 1,2 j , Ψ 1,4 j n ] .
Ψ 2 = { Ψ 2,1 , Ψ 2,2 } = { [ φ 1,1 , φ 2,1 , , φ 6,1 ] T , [ φ 1,2 , φ 2,2 , , φ N , 2 ] T } ,
s t = n = 1 N ( k = 1 6 S k , n × Ψ 2,1 ) e j 2 π f n ( t 1 ) T N × Ψ 2,2 ,

Metrics