Abstract

Employing the first-order effective medium theory, we develop an analytical model that governs light propagation inside a form birefringent medium with isotropic dielectric Kerr nonlinear material. This analytical model is found to be in excellent agreement with the recently developed rigorous Fourier modal method for Kerr nonlinear material [J. Opt. Soc. Am. B 31, 2371 (2014) [CrossRef]  ]. Theoretical results demonstrate that form birefringent linear gratings with Kerr nonlinear materials behave like uniaxial crystals. However, the magnitude of birefringence can be tuned with a change of the incident light intensity. This paves the way toward all-optical control of form birefringence by exploiting optical nonlinearities in subwavelength structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formulation of rigorous coupled-wave theory for gratings in bianisotropic media

Michihisa Onishi, Karlton Crabtree, and Russell A. Chipman
J. Opt. Soc. Am. A 28(8) 1747-1758 (2011)

Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film

Thomas A. Germer, Katelynn A. Sharma, Thomas G. Brown, and James B. Oliver
J. Opt. Soc. Am. A 34(11) 1974-1984 (2017)

Achromatic quarter-wave plates using the dispersion of form birefringence

Hisao Kikuta, Yasushi Ohira, and Koichi Iwata
Appl. Opt. 36(7) 1566-1572 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription