Abstract

The turning point of the refractive index (RI) sensitivity based on the multimode microfiber (MMMF) in-line Mach–Zehnder interferometer (MZI) is observed. By tracking the resonant wavelength shift of the MZI generated between the HE11 and HE12 modes in the MMMF, the surrounding RI (SRI) could be detected. Theoretical analysis demonstrates that the RI sensitivity will reach ± on either side of the turning point due to the group effective RI difference (G) approaching zero. Significantly, the positive sensitivity exists in a very wide fiber diameter range, while the negative sensitivity can be achieved in a narrow diameter range of only 0.3 μm. Meanwhile, the experimental sensitivities and variation trend at different diameters exhibit high consistency with the theoretical results. High RI sensitivity of 10777.8 nm/RIU (RI unit) at the fiber diameter of 4.6 μm and the RI around 1.3334 is realized. The discovery of the sensitivity turning points has great significance on trace detection due to the possibility of ultrahigh RI sensitivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach–Zehnder interferometer

Haipeng Luo, Qizhen Sun, Zhilin Xu, Deming Liu, and Lin Zhang
Opt. Lett. 39(13) 4049-4052 (2014)

Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point

Nancy Meng Ying Zhang, Kaiwei Li, Nan Zhang, Yu Zheng, Ting Zhang, Miao Qi, Ping Shum, and Lei Wei
Opt. Express 26(22) 29148-29158 (2018)

Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer

Li-Peng Sun, Tiansheng Huang, Zihao Yuan, Wenfu Lin, Peng Xiao, Mingjin Yang, Jun Ma, Yang Ran, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 27(16) 23103-23111 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription