Abstract

We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×106RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×105RIU), but also superior than current reported plasmonic sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection

Chung-Tien Li, How-foo Chen, Ieng-Wai Un, Hsin-Cheng Lee, and Ta-Jen Yen
Opt. Express 20(3) 3250-3260 (2012)

Tapered optical fiber sensor based on localized surface plasmon resonance

Hsing-Ying Lin, Chen-Han Huang, Gia-Ling Cheng, Nan-Kuang Chen, and Hsiang-Chen Chui
Opt. Express 20(19) 21693-21701 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
    [Crossref]
  2. A. G. Brolo, Nat. Photonics 6, 709 (2012).
    [Crossref]
  3. E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
    [Crossref]
  4. P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
    [Crossref]
  5. Y. Gu, Q. Li, and G. P. Wang, Opt. Lett. 36, 3326 (2011).
    [Crossref]
  6. A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).
    [Crossref]
  7. Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
    [Crossref]
  8. B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
    [Crossref]
  9. P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
    [Crossref]
  10. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
    [Crossref]
  11. R. S. Moirangthem, Y. C. Chang, and P. K. Wei, Opt. Lett. 36, 775 (2011).
    [Crossref]
  12. T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
    [Crossref]
  13. Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
    [Crossref]
  14. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
    [Crossref]
  15. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
    [Crossref]
  16. C. T. Li, H. F. Chen, I. W. Un, H. C. Lee, and T. J. Yen, Opt. Express 20, 3250 (2012).
    [Crossref]
  17. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
    [Crossref]
  18. M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
    [Crossref]
  19. In Fig. 3, a 1312-nm fiber laser was used as the excitation source for XPS, and a 633-nm diode laser was applied for optical path alignment. A calcite polarizer in front of the laser is used to increase the extinction ratio of the linear polarization up to 105:1. A half-wave plate is used to properly adjust the ratio between the s-wave and the p-wave, of which work as a reference beam and the excitation beam, respectively. A rectangular mirror set with two mirrors oriented in 135° and 45° is used to reflect the excitation and reference beams onto the first parabolic mirror and direct the reflection beam to the detection system from the second parabolic mirror. This rectangular mirror set is attached on a motorized translation stage (Sigma Koki, SGSP series) with the motion resolution of 40 nm per electronic driving pulse, which corresponds to 0.00005° per driving pulse on the incident angles. This resolution easily outperforms that, around 0.005° per driving pulse, of a high-end motorized rotation stage (Sigma Koki, SGSP-120YAW). The first parabolic mirror changes the incident parallel-axis beam onto the samples through a spherical prism made of SF11 for phase-matching condition. The incident angle of the oblique beam is controlled by the location of the laser beam on the parabolic mirror.
  20. F. Schneider, ed., Sugar Analysis-ICUMSA (International Commission for Uniform Methods of Sugar Analysis, 1979).

2014 (2)

B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

2013 (1)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

2012 (6)

C. T. Li, H. F. Chen, I. W. Un, H. C. Lee, and T. J. Yen, Opt. Express 20, 3250 (2012).
[Crossref]

A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).
[Crossref]

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

A. G. Brolo, Nat. Photonics 6, 709 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
[Crossref]

2011 (3)

2010 (2)

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
[Crossref]

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

2009 (1)

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

2004 (1)

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

1999 (1)

M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
[Crossref]

Altug, H.

A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Balmer, T. E.

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Bartoli, F. J.

B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Borghs, G.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Brolo, A. G.

A. G. Brolo, Nat. Photonics 6, 709 (2012).
[Crossref]

Cetin, A. E.

A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).
[Crossref]

Chang, Y. C.

Chen, H. F.

Chen, W. T.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Chen, Y. H.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Chiang, H. P.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Gao, Y. K.

B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
[Crossref]

Gu, Y.

Y. Gu, Q. Li, and G. P. Wang, Opt. Lett. 36, 3326 (2011).
[Crossref]

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

Haes, A. J.

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

Hafner, C.

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

Heilmann, A.

M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
[Crossref]

Heuberger, M.

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Ho, H. P.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

Hsu, W. L.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Huang, H. L.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Huang, Y. H.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

Huang, Y. W.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
[Crossref]

Kasemo, B.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

Kiesow, A.

M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
[Crossref]

Kong, S. K.

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
[Crossref]

Lagae, L.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Langhammer, C.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

Larsson, E. M.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

Lee, H. C.

Li, C. T.

Li, Q.

Y. Gu, Q. Li, and G. P. Wang, Opt. Lett. 36, 3326 (2011).
[Crossref]

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

Lodewijks, K.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

Moirangthem, R. S.

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
[Crossref]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
[Crossref]

Quinten, M.

M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
[Crossref]

Sannomiya, T.

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Schatz, G. C.

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, Opt. Lett. 35, 956 (2010).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

Sun, G.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Tsai, D. P.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Un, I. W.

Van Dorpe, P.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

Van Roy, W.

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Voros, J.

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Wang, G. P.

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

Y. Gu, Q. Li, and G. P. Wang, Opt. Lett. 36, 3326 (2011).
[Crossref]

Wei, P. K.

Wu, K.

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

Wu, P. C.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Xiao, J.

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

Yang, K. Y.

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

Yen, T. J.

Zeng, B. B.

B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
[Crossref]

Zoric, I.

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

Zou, S. L.

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

ACS Nano (1)

A. E. Cetin and H. Altug, ACS Nano 6, 9989 (2012).
[Crossref]

Ann. Phys. (1)

Y. H. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, Ann. Phys. 524, 637 (2012).
[Crossref]

Appl. Phys. B (1)

M. Quinten, A. Heilmann, and A. Kiesow, Appl. Phys. B 68, 707 (1999).
[Crossref]

Appl. Phys. Lett. (2)

B. B. Zeng, Y. K. Gao, and F. J. Bartoli, Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

P. C. Wu, G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, Appl. Phys. Lett. 105, 033105 (2014).
[Crossref]

J. Appl. Phys. (1)

Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
[Crossref]

J. Phys. Chem. B (1)

A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 108, 6961 (2004).
[Crossref]

Nano Lett. (1)

K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, Nano Lett. 12, 1655 (2012).
[Crossref]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[Crossref]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, Nat. Mater. 12, 304 (2013).
[Crossref]

Nat. Nanotechnol. (1)

P. Zijlstra, P. M. R. Paulo, and M. Orrit, Nat. Nanotechnol. 7, 379 (2012).
[Crossref]

Nat. Photonics (1)

A. G. Brolo, Nat. Photonics 6, 709 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

T. Sannomiya, T. E. Balmer, C. Hafner, M. Heuberger, and J. Voros, Rev. Sci. Instrum. 81, 053102 (2010).
[Crossref]

Science (1)

E. M. Larsson, C. Langhammer, I. Zoric, and B. Kasemo, Science 326, 1091 (2009).
[Crossref]

Other (2)

In Fig. 3, a 1312-nm fiber laser was used as the excitation source for XPS, and a 633-nm diode laser was applied for optical path alignment. A calcite polarizer in front of the laser is used to increase the extinction ratio of the linear polarization up to 105:1. A half-wave plate is used to properly adjust the ratio between the s-wave and the p-wave, of which work as a reference beam and the excitation beam, respectively. A rectangular mirror set with two mirrors oriented in 135° and 45° is used to reflect the excitation and reference beams onto the first parabolic mirror and direct the reflection beam to the detection system from the second parabolic mirror. This rectangular mirror set is attached on a motorized translation stage (Sigma Koki, SGSP series) with the motion resolution of 40 nm per electronic driving pulse, which corresponds to 0.00005° per driving pulse on the incident angles. This resolution easily outperforms that, around 0.005° per driving pulse, of a high-end motorized rotation stage (Sigma Koki, SGSP-120YAW). The first parabolic mirror changes the incident parallel-axis beam onto the samples through a spherical prism made of SF11 for phase-matching condition. The incident angle of the oblique beam is controlled by the location of the laser beam on the parabolic mirror.

F. Schneider, ed., Sugar Analysis-ICUMSA (International Commission for Uniform Methods of Sugar Analysis, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Illustration of XPS made of gold on an SF11 glass substrate ( n = 1.78 ). Each dimension is shown in the following: L = 380 nm , W = 75 nm , t = 50 nm , α = 60 ° , and periodicity of 600 nm. (b) SEM image of XPS. The scale bar is 600 nm. Inset shows a magnified SEM image with a scale bar of 200 nm.
Fig. 2.
Fig. 2. (a) Measurement and (b) simulation of transmittance spectra of XPS. (c) Simulation of electrical field distribution under p-polarized mode excitation at 1312 nm with water. The result shows a quadrupole-mode resonance. The symbols plus and minus mean the charge density distribution.
Fig. 3.
Fig. 3. Illustration of optical setup of our in-house phase interrogation system. The common-path setup is designed to increase S/N ratio by reducing the signal fluctuations between two photodiodes.
Fig. 4.
Fig. 4. Experimental analysis (blue square) and theoretical (red triangle) analysis of the sensitivity of the XPS by the phase-interrogation method. The target is sucrose aqueous solution with different concentrations corresponding to different refractive index. By linear fitting, we obtained the sensitivities of 17.46 rad/RIU and 33.44 rad/RIU for measurement (blue dashed line) and simulation (red dashed line), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tan ( ϕ P S ) = I ( π / 4 ) I ( 3 π / 4 ) I ( 0 ) I ( π / 2 ) = sin ( ϕ P S ) cos ( ϕ P S ) .

Metrics