Abstract

We report on the fabrication of a thermally resistant ultra-short distributed Bragg reflector (DBR) fiber laser based on the photo inscription of two wavelength-matched type IIa gratings in a thin-core Er-doped fiber. With continuous UV exposure, each Bragg reflector initially grows as a type I grating, followed by decay in strength, and then re-grows as a type IIa grating with enhanced thermal resistance. The DBR laser, with an entire length of 13 mm, can stably operate at 600°C with single longitude mode, which provides potential applications in high temperature environments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High temperature resistant ultra-short DBR Yb-doped fiber laser

Hushan Wang, Songsong Xiong, Jiazheng Song, Fengyan Zhao, Zhijun Yan, Xiaohu Hong, Ting Zhang, Wei Zhang, Kaiming Zhou, Cheng Li, and Yishan Wang
Appl. Opt. 58(16) 4474-4478 (2019)

Enhanced type IIA gratings for high-temperature operation

Nathaniel Groothoff and John Canning
Opt. Lett. 29(20) 2360-2362 (2004)

Thermally triggered fiber lasers based on secondary-type-In Bragg gratings

Fu-Rong Feng, Yang Ran, Yi-Zhi Liang, Shuai Gao, Yuan-Hua Feng, Long Jin, and Bai-Ou Guan
Opt. Lett. 41(11) 2470-2473 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription