Abstract

We investigate the propagation and healing of Airy beams in two dimensions that are obtainable under practical experimental conditions. We introduce an intensity similarity factor to quantitatively describe how an Airy beam retains its original shape. Based on such a figure of merit, we define a shape-retaining distance to quantify how far an Airy beam can keep the shape of its main lobe upon propagation and a healing distance to quantify how soon an initially partially blocked Airy beam can restore its main lobe profile. We perform an analysis on how these two distances scale with experimental parameters. We further use an interference picture to interpret the healing phenomenon of an Airy beam. Our work can serve as a guideline for quantitative performance analysis for applications of Airy beams and can be extended to other special beams in a straightforward fashion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamical deformed Airy beams with arbitrary angles between two wings

Yi Liang, Yi Hu, Zhuoyi Ye, Daohong Song, Cibo Lou, Xinzheng Zhang, Jingjun Xu, Roberto Morandotti, and Zhigang Chen
J. Opt. Soc. Am. A 31(7) 1468-1472 (2014)

Propagation of an Airy beam through the atmosphere

Xiaoling Ji, Halil T. Eyyuboğlu, Guangming Ji, and Xinhong Jia
Opt. Express 21(2) 2154-2164 (2013)

Propagation of Airy-related beams

M. I. Carvalho and M. Facão
Opt. Express 18(21) 21938-21949 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription