Abstract

It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters

Rui Cheng, Li Xia, Jiaao Zhou, and Deming Liu
Opt. Lett. 40(8) 1760-1763 (2015)

Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time–frequency analysis

Amelia Lavinia Ricchiuti and Salvador Sales
Appl. Opt. 55(5) 1054-1060 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription